Electromechanical Relays Selection Guide

Latching

Non-Latching

Commercial

Established Reliability

Surface-Mount

Environmental

Attenuated

TELEDYNE
RELAYS
A Teledyne Technologies Company

Switching Solutions

Teledyne Relays has been the world's innovative leader in the manufacture of ultraminiature, hermetically sealed, electromechanical and solid-state switching products for more than 40 years. The company's comprehensive product line meets a wide range of requirements for defense and aerospace, industrial, commercial, medical and RF \& wireless applications.

Business Focus

- MIL QPL \& COTS Solid-State Relays
- MIL QPL \& COTS Electromechanical Relays
- HiRel (Space) Electromechanical Relays
- RF \& Microwave Relays \& Coaxial Switches
- Industrial Solid-State Relays
- Switching Matrices

Markets

- Commercial \& Military Aviation
- Defense \& Aerospace
- Telecom/Communications (Wireless)
- Instrumentation \& Test
- Industrial Power \& Motion Control
- Medical Applications

Product Assurance

Under an aggressive Total Quality Management (TQM) program, Teledyne Relays has embraced a "continuous improvement" culture. With recognized certifications such as AS/EN/JISQ 9100 - Revision B and ISO 9001:9002, DSCC MIL-STD-790 and Boeing D6-82479 Appendix A, Teledyne Relays has become a primary supplier of switching solutions with the highest quality and reliability to industry leaders around the world.

Technical Service \& Customer Support

Teledyne Relays provides easy access to technical service and customer support. Our websites make it easy to find technical information, buy products and even get e-mail responses within 24 hours. Switching solutions are only a mouse click away at www.teledynerelays.com or at teledyne-europe.com. Information about coax switches is available at www.teledynecoax.com.

Table of Contents

RF RELAYS		
Series	Description	Page
RF100/RF103	High Repeatability, Broadband Centigrid® Relays, Non-Latching DPDT	4
GRF172	Surface-Mount Centigrid® RF Relays, Non-Latching DPDT	4
RF300/RF303	High Repeatability, Broadband TO-5 Relays, Non-Latching DPDT	5
RF312	High Repeatability, Broadband TO-5 Relays, Non-Latching DPDT	6
RF311/RF331	High Repeatability, Broadband TO-5 Relays, Non-Latching SPDT	7
GRF342	Surface-Mount TO-5 RF Relays, Magnetic-Latching DPDT	7
RF180	Broadband RF Relays, Magnetic-Latching DPDT	8
RF341	Broadband TO-5 RF Relays, Magnetic-Latching SPDT	8
RF310/RF313	High Repeatability TO-5 Relays, Normally Closed, Bypass	9
RF320/RF323	High Repeatability TO-5 Relays, Normally Open, Bypass	9
A150	Broadband Attenuator RF Relay	10
A152	Broadband Attenuator RF Relay	10
COMMERCIAL RELAYS		
122C	Centigrid® Relays (CMOS Compatible), Magnetic-Latching DPDT	11
172	Centigrid® Relays, Non-Latching DPDT	11
712	TO-5 Relays, Non-Latching DPDT	12
722	TO-5 Relays, Magnetic-Latching DPDT	12
732	TO-5 Relays, Non-Latching Sensitive DPDT	13
COMMERCIAL SURFACE-MOUNT RELAYS		
S114	Surface-Mount Centigrid® Relays, Non-Latching DPDT	14
S134	Surface-Mount Centigrid® Relays, Non-Latching Sensitive DPDT	14
S172	Surface-Mount Centigrid® Relays, Non-Latching DPDT	15
S422	Surface-Mount TO-5 Relays, Magnetic-Latching DPDT	15
ESTABLISHED RELIABILITY RELAYS		
ER114	Centigrid® Relays, Non-Latching DPDT	16
ER116C	Centigrid® Relays (CMOS Compatible), Non-Latching DPDT	16
ER134	Centigrid® Relays, Non-Latching Sensitive DPDT	17
ER136C	Centigrid® Relays (CMOS Compatible), Non-Latching Sensitive DPDT	17

Table of Contents

ESTABLISHED RELIABILITY RELAYS (continued)		
Series	Description	Page
ER411	TO-5 Relays, Non-Latching SPDT	18
ER431	TO-5 Relays, Non-Latching Sensitive SPDT	18
ER412	TO-5 Relays, Non-Latching DPDT	19
ER432	TO-5 Relays, Non-Latching Sensitive DPDT	19
255	Half-Size Crystal Can, Magnetic-Latching DPDT	20
ER421	TO-5 Relays, Magnetic-Latching SPDT	20
ER420	TO-5 Relays, Magnetic-Latching DPDT	21
ER422	TO-5 Relays, Magnetic-Latching DPDT	21
MILITARY QUALIFIED (JAN) RELAYS		
J114	Centigrid® Relays, Non-Latching DPDT	22
J116C	Centigrid® Relays (CMOS Compatible), Non-Latching DPDT	22
J134	Centigrid® Relays, Non-Latching Sensitive DPDT	23
J136C	Centigrid® Relays (CMOS Compatible), Non-Latching Sensitive DPDT	23
J411	TO-5 Relays, Non-Latching SPDT	24
J431	TO-5 Relays, Non-Latching Sensitive SPDT	24
J412	TO-5 Relays, Non-Latching DPDT	25
J432	TO-5 Relays, Non-Latching Sensitive DPDT	25
J255	Half-Size Crystal Can, Magnetic-Latching DPDT	26
J421	TO-5 Relays, Magnetic-Latching SPDT	26
J420	TO-5 Relays, Magnetic-Latching DPDT	27
J422	TO-5 Relays, Magnetic-Latching DPDT	27
HIGH-PERFORMANCE RELAYS		
412H/432H	High-Temperature ($200^{\circ} \mathrm{C}$) TO-5 Relays, Non-Latching DPDT	28
422H	High-Temperature (200 ${ }^{\circ} \mathrm{C}$) TO-5 Relays, Magnetic-Latching DPDT	28
412K	High-Shock TO-5 Relays, Non-Latching DPDT	29
422K	High-Shock TO-5 Relays, Magnetic-Latching DPDT	29
412V/432V	High-Vibration TO-5 Relays, Non-Latching DPDT	30

Table of Contents

	APPENDIX	
Signal Integrity Eye Diagrams	Page	
RoHS and Reach Certificate of Compliance	$31-38$	
Part Numbering System	39	
Spacer Pad Options	$40-41$	
Spreader Pad Options	42	
Ground Pin Options	43	
Established Reliability Program	44	
Teledyne Relays HI-REL Program	$45-46$	
Authorized Distributors	47	
Authorized North American Representatives	48	

Teledyne Relays offers a variety of options to customize and meet your specific design needs.

GRF Option
SO-5 Relays with straight
butt pins for surface-mount
applications
$* R F ~ R e l a y s ~ O n l y$

[^0]
RF RELAYS

Series RF100/RF103 Electromechanical Relays

The RF100 and RF103 Centigrid® relays are designed to provide improved RF signal repeatability over the frequency range.
The GRF100 and GRF103 Centigrid $®$ relays feature a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.
The SGRF100 and SGRF103 Centigrid® relays extend performance advantages over similar RF devices that simply offer formed leads for surface mounting.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type
DPDT Non-Latching
Coil Type
$100=$ Standard Coil
$103=$ Sensitive Coil
Mounting
RF $=$ Thru-hole GRF $=$ Surface-Mount (Stub) SGRF $=$ Surface-Mount $(J-L e a d)$
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

100
103

Part No.		Nominal Coil		Typical RF Performance					
		Voltage (Vdc)	Resistance ($)$	Frequency (GHz)	VSWR (max)	Isolation (dB)		Insertion Loss (dB) (max)	
		$\begin{aligned} & \text { Pole to Pole } \\ & (\mathrm{min}) \end{aligned}$				$\begin{array}{\|c\|} \hline \text { Across Contacts } \\ (\mathrm{min}) \end{array}$			
RF100			5	50	DC-1	1.1 : 1	35	25	0.2
		12	390	1-2	1.5:1	30	20	0.5	
RF103		5	100	2-3	1.6 : 1	30	20	0.6	
		12	800						
GRF100 GRF103		5	50	DC-1	1.1 : 1	45	30	0.2	
		12	390	1-3	1.2 : 1	40	25	0.3	
		5	100	3-4	$1.3: 1$	35	25	0.6	
		12	800	4-6	2.2 : 1	30	25	1.2	
SGRF100		5	50	DC-1	1.2 : 1	35	30	0.2	
		12	390	1-3	1.3 : 1	30	30	0.7	
SGRF103		5	100	3-4	1.4:1	25	25	0.8	
		12	800	4-6	$1.8: 1$	25	25	1.0	

Series GRF172 Electromechanical Relays

The GRF172 Centigrid $®$ relay is a hermetically sealed, armature relay for 2.5 GHz RF applications. Its low profile height .330 " (8.38 mm) and .100 " (2.54 mm) grid spaced terminals make it an ideal choice where extreme packaging density and/or close PC board spacing are required. The GRF172 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-topole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability. The GRF172 extends performance advantages over similar
RF devices that simply offer formed leads for surface mounting.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth

The Series GRF172D has an internal discrete silicon diode for coil suppression.

- Through-hole or surface-mount

Relay Type
DPDT Non-Latching
Coil Type
$172=$ Standard Coil
Diode Option
$\mathrm{D}=$ Internal diode for coil transient suppression Mounting
GRF $=$ Surface-Mount (Stub)
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Part No.		Nominal Coil		Typical RF Performance					
		Voltage (Vdc)	Resistance (Ω	Frequency (GHz)	$\underset{(\max)}{\text { VSWR }}$	Isolation (dB)		Insertion Loss (dB) (max)	
		$\begin{aligned} & \text { Pole to Pole } \\ & (\mathrm{min}) \end{aligned}$				Across Contacts (min)			
			5	50	DC-1	1.1 : 1	45	30	0.2
		12	390	1-2	1.2: 1	40	25	0.3	
		26	100	2-2.5	1.2 : 1	40	25	0.3	

[^1]
RF RELAYS

Series RF300/RF303 Electromechanical Relays

The RF300 and RF303 TO-5 relays are designed to provide improved RF signal repeatability over the frequency range.
The GRF300 and GRF303 TO-5 relays feature a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.
The SGRF300 and SGRF303 TO-5 relays extend performance advantages over similar RF devices that simply offer formed leads for surface mounting.

- Excellent Signal integrity up to 10 Gbps+
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
configurations

For RF300DD \& RF303DD values please see Datasheet

300
303

300D
303D

300DD 303DD

Schematics as viewed from terminals

RF RELAYS

Series RF312 Electromechanical Relays

The RF312 is designed to improve upon the RF300/RF303 relay's high frequency performance. The RF312 offers monotonic insertion loss over to 8GHz. This improvement in RF insertion loss over the frequency range, makes these relays highly suitable for use in attenuator and other RF circuits.
The GRF312 is designed to improve upon the GRF300/GRF303 relay's high frequency performance. The GRF312 TO-5 relay features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 12Gbps+
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
configurations

Relay Type
DPDT Non-Latching
Coil Type
$312=$ Standard Coil
Mounting
RF $=$ Thru-hole GRF $=$ Surface-Mount (Stub) SGRF $=$ Surface-Mount $(\mathrm{J}$-Lead)
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Part No.		Nominal Coil		Typical RF Performance					
		Voltage (Vdc)	Resistance (Ω	Frequency (GHz)	$\begin{aligned} & \text { VSWR } \\ & (\max) \end{aligned}$	Isolation (dB)		Insertion Loss (dB) (max)	
		Pole to Pole (min)				Across Contacts (min)			
	RF312		5	50	DC-2	1.2 : 1	30	20	0.2
		2-4			$1.2: 1$	25	20	0.4	
		12	390	4-6	1.3 : 1	25	20	0.6	
1				6-8	1.4 : 1	20	20	0.8	
	GRF312	5	50	DC-2	1.4 : 1	40	30	0.3	
				2-4	1.4 : 1	40	30	0.5	
		12	390	4-6	1.5 : 1	35	30	1.0	
				6-8	1.5 : 1	35	30	1.5	
	SGRF312	5	50	DC-2	1.2 : 1	40	30	0.2	
				2-4	1.2 : 1	35	30	0.5	
		12	390	4-6	1.3 : 1	30	25	1.0	
				6-8	$1.5: 1$	30	25	1.5	

[^2]the online oistributor of flegtronic component

RF RELAYS

Series RF311/RF331 Electromechanical Relays

The RF311/RF331 relays are designed to provide improved RF signal repeatability over the frequency range. These relays are highly suitable for use in attenuator and other RF circuits.
The GRF311 offers monotonic insertion loss to 8GHz. This improvement in RF insertion loss over the frequency range makes these relays highly suitable for use in attenuator and other RF circuits. The GRF311 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
configurations

Excelient Signal integrity up to 10 Gbps
Herm Resistance

- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
configurations

Relay Type
SPDT Non-Latching
Coil Type
$311=$ Standard Coil
$331=$ Sensitive Coil
Mounting
RF $=$ Thru-hole GRF $=$ Surface-Mount (Stub)
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Series GRF342 Electromechanical Relays

The Series GRF342 relay is a hermetically sealed, RF relay designed from inception for surface mount applications. This magnetic-latching relay features extremely low internal circuit losses for exceptional time and frequency domain response characteristics through and beyond the UHF spectrum and into the S band. The GRF342 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides an RF ground interface that results in improved high-frequency performance as well as parametric repeatability. The GRF342 extends performance advantages over similar RF devices that simply offer formed leads for surface mounting.

- Excellent Signal integrity up to 10 Gbps - Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
configurations

Relay Type
DPDT Magnetic-Latching
Coil Type
$342=$ Standard Coil
Mounting
GRF $=$ Surface-Mount (Stub)
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Part No.	Nominal Coil		Typical RF Performance				
	Voltage (Vdc)	Resistance ($)$	$\begin{aligned} & \text { Frequency } \\ & \text { (GHz) } \end{aligned}$	VSWR (max)	Isolation (dB)		Insertion Loss (dB) (max)
					Pole to Pole (min)	$\begin{array}{\|l\|} \text { Across Contacts } \\ (\mathrm{min}) \end{array}$	
	5	50	DC-2	1.1: 1	40	35	0.3
GRF342	12	390	2-4	1.2 : 1	30	30	0.4
			4-6	1.4: 1	25	25	0.8

[^3]

RF RELAYS

Series RF180 Electromechanical Relays

The Series RF180 relay is a hermetically sealed, magnetic-latching relay featuring extremely low intercontact capacitance for exceptional RF performance over the full UHF spectrum. Its low profile height and .100 " $(2.54 \mathrm{~mm})$ grid spaced terminals make it ideal for applications where extreme packaging density and/or close PC board spacing are required.
The GRF180 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
configurations

180

SCHEMATIC
(Coil B Last Energized)

Series RF341 Electromechanical Relays

The RF341 series relay is an ultraminiature, hermetically sealed, magnetic-latching relay featuring extremely low intercontact capacitance for exceptional RF performance well into the C band. Its low profile and small size make it ideal for applications where extreme packaging density and/or close PC board spacing are required. Due to its minimal mass, many relays may be used to configure replacements for bulkier switching solutions at substantial savings in weight. The RF341 design has been optimized by increasing the distance between the set/reset contacts. This design improvement makes these unique relays the perfect choice for use in RF attenuators, RF switching matrices and other RF applications requiring high isolation, low insertion loss and low VSWR.
The GRF341 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 10 Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type
SPDT Magnetic-Latching
Coil Type
$341=$ Standard Coil
Mounting
RF $=$ Thru-hole
GRF $=$ Surface-Mount (Stub)
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Part No.	Nominal Coil		Typical RF Performance			
	Voltage (Vdc)	Resistance (Ω	Frequency (GHz)	VSWR (max)	Isolation Across Contacts (dB) (min)	Insertion Loss (dB) (max)
	5 12 26	$\begin{gathered} 61 \\ 500 \\ 2000 \end{gathered}$	$\begin{gathered} D C-2 \\ 2-4 \\ 4-6 \end{gathered}$	$\begin{aligned} & 1.2: 1 \\ & 1.2: 1 \\ & 1.4: 1 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 2.0 \end{aligned}$
GRF341	$\begin{gathered} 5 \\ 12 \\ 26 \end{gathered}$	$\begin{gathered} 61 \\ 500 \\ 2000 \end{gathered}$	$\begin{gathered} D C-2 \\ 2-4 \\ 4-6 \end{gathered}$	$\begin{aligned} & 1.2: 1 \\ & 1.3: 1 \\ & 1.4: 1 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.7 \\ & 1.5 \end{aligned}$

THE online distributor of electronc components

RF RELAYS

Series RF310/RF313 Electromechanical Relays

The ultraminiature RF310 and RF313 relays are designed with an internal bypass (through path), when the coil is de-energized, to provide low insertion loss and VSWR through the bypass and simplicity of design for the user. Relays have improved RF insertion loss repeatability over the frequency range from DC to 3 GHz . Highly suitable for use in attenuator, linear amplifier and other RF circuits.

- N.C. bypass configuration
 - Repeatable insertion loss
 - Broad Bandwidth

- Metal Enclosure for EMI shielding
 - Ground pin option to improve ground case RF grounding
 - High isolation between control and signal path

Series RF320/RF323 Electromechanical Relays

The ultraminiature RF320 and RF323 relays are designed with an internal bypass (through path), when the coil is energized, to provide low insertion loss and VSWR through the bypass and simplicity of design for the user. The RF320 and RF323 relays have improved RF insertion loss repeatability over the frequency range from DC to 3 GHz . Highly suitable for use in attenuator, linear amplifier and other RF circuits.

- Metal Enclosure for EMI shielding
 - Ground pin option to improve ground case RF grounding
 - High isolation between control and signal path

N.O. bypass configuration

- Repeatable insertion loss
- Broad Bandwidth

Relay Type
Normally Open Bypass
Coil Type
320 = Standard Coil 323 = Sensitive Coil
Mounting
RF = Thru-hole
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

RF320
RF323

Part No.		Nominal Coil		Typical RF Performance							
		Voltage (Vdc)	Resistance ($\Omega)$	Frequency (GHz)	VSWR		Isolation (dB)		Insertion Loss (dB)		
		$\begin{aligned} & \text { N.C. } \\ & (\max) \end{aligned}$			$\begin{array}{\|l} \text { Bypass } \\ (\max) \end{array}$	N.C. (min)	$\begin{gathered} \text { Bypass } \\ (\mathrm{min}) \end{gathered}$	N.C. (max)	Bypass (max)		
	RF320		5	50	DC-1	1.2 : 1	1.4 : 1	30	25	0.2	0.4
		12	390	1-2	1.2 : 1	1.4 : 1	30	20	0.3	0.4	
				2-3	1.4 : 1	1.4 : 1	25	20	0.4	0.6	
$\int \begin{aligned} & 4 F \overline{323} \\ & -12 \end{aligned}$	RF323	5	100	DC-1	1.2 : 1	1.4 : 1	30	25	0.2	0.4	
		12	850	1-2	1.2 : 1	1.4 : 1	30	20	0.3	0.4	
				2-3	$1.4: 1$	1.4 : 1	25	20	0.4	0.5	

RF RELAYS

Series A150 Electromechanical Relays

The Series A150 ultraminiature Attenuator Relays are designed for attenuating RF signals in 50 -ohm systems over a frequency range from DC to 3 GHz . Their low profile and small grid spacing makes them ideal for use when packaging density is a prime consideration. The A150 relays eliminate the need for additional external resistors.
These single section, switchable attenuator relays have internal matched thin film attenuator pads in "L," "T" or "Pi" configurations, as applicable. Relays are available in fixed increments of 1, 2, 3, 4, 5, $6,8,10,16$ and 20 dB , which can be used singly or in combination to achieve the attenuation levels desired.
The GA150 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent phase linearity
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type	Part No.	Nominal Coil		Typical RF Performance				
RF Attenuator		Voltage (Vdc)	Resistance (Ω	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	VSWR		Insertion Loss (dB)	
Coil Type					Attenuated Path (Typ.)	Thru Path (Max.)	Typ.	Max.
Mounting		5	50	DC-1	1.20 : 1	1.10 : 1	0.1	0.25
$\begin{aligned} & \text { A = Thru-hole } \\ & \text { GA = Surface-Mount (Stub) } \end{aligned}$		12	390	1-2	1.30 : 1	1.20 : 1	0.2	0.35
Temperature		15	610	2-3	1.40 : 1	1.25 : 1	0.3	0.55
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		26	1560					
	GA150	5	50	DC-1	1.20 : 1	1.20 : 1	0.1	0.25
		12	390	1-2	1.20 : 1	1.20 : 1	0.2	0.35
		15	610	2-3	1.20 : 1	1.30 : 1	0.3	0.45
		26	1560					

Series A152 Electromechanical Relays

The Series A152 highly repeatable ultraminiature attenuator relays are designed for attenuating RF signals in 50 -ohm systems over a frequency range from DC to 5 GHz . Their low profile and small grid spacing makes them ideal for use when packaging density is a prime consideration. The A152 relays eliminate the need for additional external resistors/attenuators.
These single section, switchable attenuator relays have an internal matched thin film attenuator pad in a "Pi" configuration. Relays are available in a fixed increment of 20 dB . (Other values available) The GA152 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type
RF Attenuator
Coil Type
A152 $=$ Standard Coil
Mounting
A $=$ Thru-hole
GA $=$ Surface-Mount (Stub)
Temperature
Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

152

SCHEMATIC (Bottom View)

Part No.	Nominal Coil		Typical RF Performance				
	Voltage (Vdc)	Resistance ($\Omega)$	$\begin{aligned} & \text { Frequency } \\ & \text { (GHz) } \end{aligned}$	VSWR		Insertion Loss (dB)	
				Attenuated Path (Typ.)	$\begin{aligned} & \text { Thru Path } \\ & \text { (Max.) } \end{aligned}$	Typ.	Max.
A152	5	50	DC-1	1.20 : 1	1.10 : 1	0.1	0.25
	12	390	1-2	1.30 : 1	1.20 : 1	0.2	0.35
	15	610	2-3	1.40 : 1	$1.25: 1$	0.3	0.55
	26	1560	3-5	See Datasheet			
GA152	5	50	DC-1	1.20 : 1	1.20 : 1	0.1	0.25
	12	390	1-2	1.20 : 1	1.20 : 1	0.2	0.35
	15	610	2-3	1.20 : 1	1.30 : 1	0.3	0.45
	26	1560	3-5	1.40 : 1	1.70 : 1	0.4	0.55

Page 10
the online distributor of Electronic component

COMMERCIAL RELAYS

Series 122C Electromechanical Relays

The 122C Centigrid ${ }^{\circledR}$ magnetic-latching relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100 " (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.
The basic operating function and internal structure are similar to Teledyne's TO-5, 422 relay series. The 122 C is capable of meeting Teledyne Relays' T2R® requirements.
The Series 122C relay has internal silicon diodes for coil suppression, Zener diodes to protect the MOSFET gate inputs, and N -channel enhancement-mode MOSFET chips, which enable direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).
The 122C magnetic-latching relay is ideally suited for applications where coil operating power must be minimized. The relays can be operated with a short-duration pulse. After the contacts have transferred, no external coil power is required.
The magnetic-latching feature of the Series 122C relay provides a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Series 172 Electromechanical Relays

The 172 Centigrid® relay is an ultraminiature, hermetically sealed, armature relay for commercial applications. Its low profile height $.280^{\prime \prime}(7.11 \mathrm{~mm})$ and $.100^{\prime \prime}(2.54 \mathrm{~mm})$ grid spaced terminals, which preclude the need for spreader pads, make it an ideal choice where extreme packaging density and/or close PC board spacing are required.
The Series 172 relay has an internal discrete silicon diode for coil transient suppression.
By virtue of its inherently low intercontact capacitance and contact circuit losses, the 172 relay is an excellent subminiature RF switch for frequencies well into the UHF spectrum. Applications include telecommunications, test instruments, mobile communications, attenuators, and automatic test equipment.

- All welded construction
- Unique uni-frame design providing high
magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock
and vibration
- Precious metal alloy contact material with
gold plating assures excellent high current
and dry circuit switching capabilities
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
gold plating assures excellent high current and dry circuit switching capabilities

the on ine oistributor of alegtronic components

COMMERCIAL RELAYS

Series 712 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the Series 712 relays are some of the most versatile ultraminiature relays available because of their small size and low coil power dissipation.
The Series 712D relay has an internal discrete silicon diode for coil transient suppression. The hybrid Series 712TN relay has an internal silicon diode and transistor driver. The integrated packaging of the relay with its associated semiconductor devices greatly reduces PC board floor space requirements as well as component installation costs.
By virtue of its inherently low intercontact capacitance and contact circuit losses, the 712 has proven to be excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Series 722 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the 722 relay has become one of the most versatile ultraminiature relays available because of its small size and low coil power dissipation.
The Series 722D relay has discrete silicon diodes for coil transient suppression.
The Series 722 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse and after the contacts have transferred, no external coil power is required. The magnetic-latching feature of the Series 722 provides a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	
DPDT Magnetic-Latching	
Diode Options	
D = Internal diode for coil	
transient suppression	
Vibration	Shock
10 g's to 500 Hz	30 g's 6 msec, half-sine
Temperature	

Part No.		Nominal Coil		
		Voltage (Vdc)	Resistance (Ω	Set \& Reset Voltage (Vdc)
		5	61	3.5
		6	120	4.5
	722	9	280	6.8
	722D	12	500	9.0
		18	1130	13.5
		26	2000	18.0

Contact Load Rating

Resistive: 1A/28Vdc
Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$
Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$
Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV

COMMERCIAL RELAYS

Series 732 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the Series 732 relay is one of the most versatile ultraminiature relays available because of their small size and low coil power dissipation. The sensitive 732 relay has a high resistance coil, thus requiring extremely low operating power (200 mW typical). The advantages of reduced heat dissipation and power supply demands are a plus The Series 732D relay has an internal discrete silicon diode for coil transient suppression. The hybrid Series 732TN relay has an internal silicon diode and transistor driver. The integrated packaging of the relay with its associated semiconductor devices greatly reduces PC board floor space requirements as well as component installation costs.
By virtue of its inherently low intercontact capacitance and contact circuit losses, the 732 has proven to be excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Schematics as viewed from terminals

COMMERCIAL SURFACE-MOUNT RELAYS

Series S114 \& S134 Electromechanical Relays

The Series S114 Surface Mount Centigrid® Relay is an ultraminiature, hermetically sealed, armature relay. The low profile height .360 " (9.14 mm) and .100 " $(2.54 \mathrm{~mm})$ lead spacing make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The specially formed leads are pre-tinned to make the relays ideal for most types of surface mount solder reflow processes.
The basic design and internal construction are identical to the Series 114 \& 134 Centigrid $®$ relays, and are capable of meeting Teledyne Relays' T2R $®$ requirements.
The S114D and S114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.
The sensitive S 134 surface mount Centigrid $®$ Relay has a high resistance coil, thus requiring extremely low operating power (200 mW typical). The advantages of reduced heat dissipation and power supply demands are a plus.

Schematics as viewed from terminals
the onine distributor of electronic components

COMMERCIAL SURFACE-MOUNT RELAYS

Series S172 Electromechanical Relays

The S172 surface mount Centigrid $®$ relay is an ultraminiature, hermetically sealed, armature relay for commercial applications. Its low profile height . 470 " (11.94 mm) and .100 " (2.54 mm) grid spaced terminals make it an ideal choice where extreme packaging density and/or close PC board spacing are required. The specially formed surface-mount leads are pre-tinned to make the relays ideal for all types of surface-mount solder reflow processes.
The basic design and internal structure are similar to Teledyne's DPDT 114 Centigrid $®$ relay. (see page 16) The S172D relay has an internal discrete silicon diode for coil transient suppression.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Series S422 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board surface mounting, its small size and low coil power dissipation make the S422 relay one of the most versatile ultraminiature relays available.
The Series S422D and S422DD utilize discrete diodes for coil suppression and polarity reversal protection. The Series S422 magnetic-latching relays are ideally suited for applications where power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required.
The magnetic-latching feature of the Series S422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

ESTABLISHED RELIABILITY T²R RELAYS

Series ER114 Electromechanical Relays

The Series ER114 Centigrid $®$ relay is an ultraminiature, hermetically sealed, armature relay. Its low profile height .275 " (7 mm) and .100 " (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The basic design and internal construction are similar to the standard Teledyne DPDT TO-5 relay (e.g., Series ER412)
The Series ER114D and ER114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.
By virtue of its inherently low intercontact capacitance and contact circuit losses, the ER114 relay has proven to be an excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the ER114 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type		Part No.		Nominal Coil					Contact Load Rating	
DPDT Non-Latching				Voltage (Vdc)	Resistance (Ω	$\begin{gathered} \text { P.U.V } \\ (\text { (Vdc) (max.) } \end{gathered}$	D.O.V (Vdc)			
Diode Options				min.			max.			
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection		7 F	ER114 ER114D		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
		6		98	4.5	0.18	3.2			
		9		220	6.8	0.35	4.9			
		12		390	9.0	0.41	6.5			
		18		880	13.5	0.59	10.0			
Vibration	Shock			26	1560	18.0	0.89	13.0		
30 g 's	75 g's 6 msec ,				5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
to 3000 Hz	half-sine		[1]		6	78	5.0	0.7	3.4	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$
Acceleration	Temperature			ER114DD	9	220	7.8	0.8	5.3	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$
					12	390	10.0	0.9	6.5	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
50 g 's	Storage:			18	880	14.5	1.1	10.0		
	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			26	1560	19.0	1.4	13.0		

Series ER116C Electromechanical Relays

The ER116C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100 " (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.
The Series ER116C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the
MOSFET gate input, and an N-channel enhancement mode MOSFET chip, which enables direct relay interfacing with most Microprocessor and IC logic families (CMOS, TTL and MOS).

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration

Relay Type	
DPDT Non-Latching	
CMOS Feature	
Internal power MOSFET driver, Zener diode gate protec- tion, and diode coil suppression	
Vibration	Shock
30 g's to 3000 Hz	75 g's 6 msec, half-sine
Acceleration	Temperature
50 g's	 Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Part No.	Nominal Coil					Contact Load Rating
	Voltage (Vdc)	$\begin{aligned} & \text { Coil Current } \\ & (\mathrm{mA}) \end{aligned}$		Operating Power (mW)	$\begin{aligned} & \text { P.U.V } \\ & \text { (Vdc) } \\ & \text { (max.) } \end{aligned}$	
		Min.	Max.			
	5	96.5	132.3	641	4.0	Resistive: 1A/28Vdc
	6	60.3	83.9	462	4.9	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$
	9	33.1	47.1	368	7.3	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$
	12	24.9	36.1	369	9.8	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
	18	16.1	24.1	368	14.6	
	26	12.9	19.9	450	19.5	

the onime distributor of electronic components

ESTABLISHED RELIABILITY T²R RELAYS

Series ER134 Electromechanical Relays

The ER134 sensitive Centigrid $®$ relay retains the same features as the ER114 standard Centigrid $®$ relay with only a minimal increase in profile height $.375^{\prime \prime}(9.53 \mathrm{~mm})$. Its .100 " (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, and its low profile make the ER134 relay ideal for applications where high packaging density is important.
The Series ER134D and ER134DD have internal discrete silicon diodes for coil suppression and polarity reversal protection.
The sensitive ER134 Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	
DPDT Non-Latching	
Diode Options	
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection	
Vibration	Shock
$\begin{gathered} 30 \mathrm{~g} \text { 's } \\ \text { to } 3000 \mathrm{~Hz} \end{gathered}$	75 g's 6 msec , half-sine
Acceleration	Temperature
50 g's	Operating \& Storage: $-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$

Part No.	Nominal Coil					Contact Load Rating
	Voltage (Vdc)	Resistance (Ω)	$\begin{gathered} \text { P.U.V } \\ (\mathrm{Vdc})(\text { max. }) \end{gathered}$	D.O.V (Vdc)		
				min.	max.	
	5	100	3.5	0.12	2.5	Resistive: $1 \mathrm{~A} / 28 \mathrm{Vdc}$ Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
	6	200	4.5	0.18	3.2	
	9	400	6.8	0.35	4.9	
	12	800	9.0	0.41	6.5	
	18	1600	13.5	0.59	10.0	
	26	3200	18.0	0.89	13.0	
	5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
	6	125	4.8	0.8	3.0	
	9	400	8.0	0.9	4.5	
	12	800	11.0	1.0	5.8	
	18	1600	14.5	1.1	9.0	
	26	3200	19.0	1.3	13.0	

Series ER136C Electromechanical Relays

The sensitive ER136C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100 " (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.
The sensitive ER136C Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mW , typical). The advantages of reduced heat dissipation and power supply demands are a plus.
The sensitive Series ER136C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N -channel enhancement-mode MOSFET chip that enables direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration

ESTABLISHED RELIABILITY T²R RELAYS

Series ER411 \& ER431 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the ER411 relay one of the most versatile ultraminiature relays available.
The Series ER411D and ER411DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER411T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.
The sensitive ER431 relay has a high resistance coil, thus requiring extremely low operating power (150 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.
The Series ER431D and ER431DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER431T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by minimizing the number of external components needed to drive the relay.

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
-Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	
SPDT Non-Latching	
Coil Type	
ER411 $=$ Standard CoilER431 = Sensitive Coil	
Diode Options	
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection T = Internal transistor drive and coil transient suppression diode	
Vibration	Shock
$\begin{gathered} 30 \mathrm{~g} \text { 's } \\ \text { to } 3000 \mathrm{~Hz} \end{gathered}$	75 g's 6 msec , half-sine
Acceleration	Temperature
50 g 's	Operating \& Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	ER411 ER431
	ER411D ER431D
	ER411DD ER431DD

ESTABLISHED RELIABILITY T²R RELAYS

Series ER412 \& ER432 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the ER412 relay one of the most versatile ultraminiature relays available.
The Series ER412D and ER412DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER412T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.
The sensitive ER432 relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus
The Series ER432D and ER432DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER432T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by minimizing the number of external components needed to drive the relay.

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	
DPDT Non-Latching	
Coil Type	
ER412 = Standard Coil ER432 = Sensitive Coil	
Diode Options	
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection T = Internal transistor drive and coil transient suppression diode	
Vibration	Shock
$\begin{gathered} 30 \mathrm{~g} \text { 's } \\ \text { to } 3000 \mathrm{~Hz} \end{gathered}$	75 g's 6 msec , half-sine
Acceleration	Temperature
50 g's	Operating \& Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Part No.		Nominal Coil					Contact Load Rating	
		Voltage (Vdc)	Resistance ($\Omega)$	$\begin{gathered} \text { P.U.V } \\ \text { (Vdc) (max.) } \end{gathered}$	D.O.V (Vdc)			
		min.			max.			
	$\begin{gathered} \text { ER412 } \\ \text { ER412D } \end{gathered}$		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 uA
		6	98	4.5	0.18	3.2		
		9	220	6.8	0.35	4.9		
		12	390	9.0	0.41	6.5		
		18	880	13.5	0.59	10.0		
		26	1560	18.0	0.89	13.0		
	ER412DD	5	39	3.9	0.6	2.8	Resistive: $1 \mathrm{~A} / 28 \mathrm{Vdc}$ Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 uA	
		6	78	5.2	0.7	3.4		
		9	220	7.8	0.8	5.3		
		12	390	10.0	0.9	6.5		
		18	880	14.5	1.1	10.0		
		26	1560	19.0	1.4	13.0		
	ER412T	5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV	
		6	98	4.5	0.18	3.2		
		9	220	6.8	0.35	4.9		
		12	390	9.0	0.41	6.5		
		18	880	13.5	0.59	10.0		
		26	1560	18.0	0.89	13.0		
$\begin{array}{r} -543 \\ 0305 \\ 5520 \\ \hline \end{array}$	$\begin{aligned} & \text { ER432 } \\ & \text { ER432D } \end{aligned}$	5	100	3.5	0.14	2.5	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV	
		6	200	4.5	0.18	3.2		
		9	400	6.8	0.35	4.9		
		12	850	9.0	0.41	6.5		
		18	1600	13.5	0.59	10.0		
		26	3300	18.0	0.89	13.0		
	ER432DD	5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV	
		6	125	4.8	0.8	3.0		
		9	400	8.0	0.9	4.5		
		12	850	11.0	1.0	5.8		
		18	1600	14.5	1.1	9.0		
		26	3300	19.0	1.3	13.0		
ER432T		5	100	3.6	0.14	2.5	Resistive: $1 \mathrm{~A} / 28 \mathrm{Vdc}$ Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV	
		6	200	4.8	0.18	3.2		
		9	400	7.8	0.35	4.9		
		12	850	11.0	0.41	6.5		
		18	1600	14.5	0.59	10.0		
		26	3300	19.0	0.89	13.0		

ER412T
ER432T
Schematics as viewed from terminals
P.U.V = Pick-Up Voltage
D.O.V = Drop-Out Voltage

ESTABLISHED RELIABILITY T²R RELAYS

Series 255, 256, 257, 258 Electromechanical Relays
The Series 255 is an industry-standard, half-size, latching crystal can relay. It has a wide range of switching capabilities ranging from low level to 2 amps. The Series $\mathrm{J} 255 / 255$ latching relay configuration is doublepole double-throw (DPDT), so the relay offers excellent switching density and versatility.
Half-Size Crystal Can Features:

- Low level to 2 amps
- Wide range of switching capabilities
- Smallest relay package capable of switching 2 amps
- Modernized assembly process
- Lead-free (gold-plated wire lead only)
- All welded construction
- Wire leads, gold-plated or solder-coated
- Matched seal for superior hermeticity
- Gold-plated contact assembly
- Modernized assembly process
- Advanced cleaning techniques

Series ER421 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the ER421 relay one of the most versatile ultraminiature relays available.
The Series ER421D and ER421DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.
The Series ER421 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series ER421

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current
and dry circuit switching capabilities

Relay Type		Part No.	Nominal Coil			Contact Load Rating
Diode Options			(Vac)	(Ω)	Voitage (Vac)	
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection		ER421	6 9 12 18 26	$\begin{gathered} 120 \\ 280 \\ 500 \\ 1130 \\ 2000 \end{gathered}$	$\begin{gathered} 4.5 \\ 6.8 \\ 9.0 \\ 13.5 \\ 18.0 \end{gathered}$	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
Vibration	Shock	ER421D	5	61	3.7	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
$\begin{gathered} 30 \mathrm{~g} \text { 's } \\ \text { to } 3000 \mathrm{~Hz} \end{gathered}$	100 g's 6 msec , half-sine		6	120 280	$\begin{aligned} & 4.5 \\ & 6.8 \end{aligned}$	
Acceleration	Temperature		12	500	9.0	
50 g 's	Operating \& Storage:$-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$		18 26	$\begin{aligned} & 1130 \\ & 2000 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 18.0 \end{aligned}$	
		ER421DD	5	48	4.5	Resistive: 1A/28Vdc
*See Schematics on Page 21			6	97	5.5	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$
		9	280	7.8	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$	
		12	500	10.0	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV	
		18	1130	14.5		
		26	2000	19.0		

the online oistributor of flegtronic component

ESTABLISHED RELIABILITY T²R RELAYS

Series ER420 \& ER422 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the ER420 \& ER422 relays some of the most versatile ultraminiature relays available.
The Series ER420D/ER422D and ER420DD/ER422DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.
The Series ER420/ER422 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series ER420/ ER422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	
DPDT Magnetic-Latching	
Grounding Options	
$\begin{aligned} & 420=\text { Individual } \\ & 422=\text { Common } \end{aligned}$	
Diode Options	
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection	
Vibration	Shock
$\begin{gathered} 30 \mathrm{~g} \text { 's } \\ \text { to } 3000 \mathrm{~Hz} \end{gathered}$	100 g's 6 msec , half-sine
Acceleration	Temperature
50 g 's	Operating \& Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Schematics Shown with Coil A Last Energized Schematics as viewed from terminals

COIL

ER421DD

ER422

ER422D

ER422DD

MILITARY QUALIFIED (JAN) RELAYS

Series J114 Electromechanical Relays

The Series J 114 Centigrid $®$ relay is an ultraminiature, hermetically sealed, armature relay. Its low profile height $.275^{\prime \prime}(7 \mathrm{~mm})$ and .100 " (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The basic design and internal construction are similar to the standard Teledyne DPDT TO-5 relay (e.g., Series J412).
The Series J114D and J114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.
By virtue of its inherently low intercontact capacitance and contact circuit losses, the J114 relay has proven to be an excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the J 114 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type		Part No.		Nominal Coil					Contact Load Rating	
DPDT Non-Latching				Voltage (Vdc)	Resistance (Ω	$\begin{gathered} \text { P.U.V } \\ (\mathrm{Vdc})(\text { max. }) \end{gathered}$	D.O.V (Vdc)			
Diode Options				min.			max.			
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection			J114(M39016/17)J114D(M39016/18)		5	50	3.5	0.14	2.3	Resistive: $1 \mathrm{~A} / 28 \mathrm{Vdc}$ Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
		6		98	4.5	0.18	3.2			
		9		220	6.8	0.35	4.9			
		12		390	9.0	0.41	6.5			
		18		880	13.5	0.59	10.0			
Vibration	Shock			26	1560	18.0	0.89	13.0		
30 g 's	75 g's 6 msec ,			$\begin{aligned} & \text { J114DD } \\ & \text { (M39016/18) } \end{aligned}$	5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
to 3000 Hz	half-sine				6	78	5.0	0.7	3.4	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$
Acceleration	Temperature				9	220	7.8	0.8	5.3	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$
50 g 's	Operating \&				12	390	10.0	0.9	6.5	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
	Storage:	18			880	14.5	1.1	10.0		
	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	26			1560	19.0	1.4	13.0		

Series J116C Electromechanical Relays

The J116C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100 " (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.
The Series J116C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N -channel enhancement mode MOSFET chip, which enables direct relay interfacing with most Microprocessor and IC logic families (CMOS, TTL and MOS).

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration

Relay Type	
DPDT Non-Latching	
CMOS Feature	
Internal power MOSFET driver, Zener diode gate protec- tion, and diode coil suppression	
Vibration	Shock
30 g's to 3000 Hz	75 g's 6 msec, half-sine
Acceleration	Temperature
50 g's	 Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

P.U.V $=$ Pick-Up Voltage
D.O.V $=$ Drop-Out Voltage

Part No.	Nominal Coil					Contact Load Rating
	Voltage (Vdc)	$\begin{aligned} & \text { Coil Current } \\ & (\mathrm{mA}) \end{aligned}$		Operating Power (mW)	P.U.V (Vdc) (max.)	
		Min.	Max.			
$\underset{\text { (M28776/6) }}{\text { J116C }}$	5	96.5	132.3	641	4.0	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
	6	60.3	83.9	462	4.9	
	9	33.1	47.1	368	7.3	
	12	24.9	36.1	369	9.8	
	18	16.1	24.1	368	14.6	
	26	12.9	19.9	450	19.5	

J114

J114D

J114DD

Schematics as viewed from terminals
the online oistributor of elegtronic component

MILITARY QUALIFIED (JAN) RELAYS

Series J134 Electromechanical Relays

The J 134 sensitive Centigrid $®$ relay retains the same features as the J 114 standard Centigrid $®$ relay with only a minimal increase in profile height $.375^{\prime \prime}$ (9.53 mm). Its .100 " $(2.54 \mathrm{~mm}$) grid spaced terminals, which preclude the need for spreader pads, and its low profile make the J134 relay ideal for applications where high packaging density is important.
The Series J134D and J134DD have internal discrete silicon diodes for coil suppression and polarity reversal protection.
The sensitive J134 Centigrid $®$ relay has a high resistance coil, thus requiring extremely low operating power

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities
(200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

Series J136C Electromechanical Relays

The sensitive J136C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100 " (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.
The sensitive J136C Centigrid $®$ relay has a high resistance coil, thus requiring extremely low operating power (200 mW , typical). The advantages of reduced heat dissipation and power supply demands are a plus.
The sensitive Series J136C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N -channel enhancement-mode MOSFET chip that enables direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

MILITARY QUALIFIED (JAN) RELAYS

Series J411 \& J431 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the J411 relay one of the most versatile ultraminiature relays available.
The Series J411D and J411DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J411T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.
The sensitive J 431 relay has a high resistance coil, thus requiring extremely low operating power (150 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.
The Series J431D and J431DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J431T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

J411T
Schematics as viewed from terminals D.O.V = Drop-Out Voltage

MILITARY QUALIFIED (JAN) RELAYS

Series J412 \& J432 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the J412 relay one of the most versatile ultraminiature relays available.
The Series J412D and J412DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J412T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.
The sensitive J 432 relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.
The Series J432D and J432DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J432T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type		Part No.		Nominal Coil					Contact Load Rating		
DPDT Non-Latching				Voltage	Resistance	P.U.V	D.O.	Vdc)			
Coil Type				(Vdc	(Ω)	(Vdc) (max.)	min.	max.			
J412 = Standard Coil J432 = Sensitive Coil		$\begin{gathered} \mathrm{J} 412 \\ \text { (М39016/9) } \end{gathered}$		5	50 98	3.5 4.5	0.14 0.18	2.3 3.2	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$		
Diode Options				9	220	6.8	0.35	4.9	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$		
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection T = Internal transistor drive and coil transient suppression diode		Th $\underset{(\text { M } 39016 / 15)}{\mathrm{J} 412 \mathrm{D}}$		12	390	9.0	0.41	6.5	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 uA		
		18	880	13.5	0.59	10.0					
		26	1560	18.0	0.89	13.0					
				5		3.9	0.6	2.8	Resistive: 1A/28Vdc Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 uA		
		6	39 78	5.2							
		9	220	7.8	0.8	5.3					
		12	390	10.0	0.9	6.5					
		18	880	14.5	1.1	10.0					
Vibration	Shock			26	1560	19.0	1.4	13.0			
$\begin{aligned} & 30 \mathrm{~g} \text { 's } \\ & \text { to } 3000 \mathrm{~Hz} \end{aligned}$	75 g's 6 msec , half-sine			Π	$\begin{gathered} \text { J412T } \\ \text { (M28776/1) } \end{gathered}$	5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
				6		98	4.5	0.18	3.2	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$	
				9		220	6.8	0.35	4.9	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$	
Acceleration	Temperature			12		390	9.0	0.41	6.5	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV	
50 g's	Operating \& Storage:$-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	1826	$\begin{gathered} 880 \\ 1560 \end{gathered}$			$\begin{aligned} & 13.5 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.89 \end{aligned}$	10.0			
								13.0			
			$\underset{\text { (М39016/11) }}{\mathbf{J 4 3 2}}$		5	100	3.5	0.14	2.5	Resistive: 1A/28Vdc	
	$\begin{aligned} & \mathrm{J} 412 \\ & \mathrm{~J} 432 \end{aligned}$	4			6	200	4.5	0.18	3.2	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$	
					9	400	6.8	0.35	4.9	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$	
			$\underset{\text { (M39016/16) }}{\substack{\text { J432D }}}$	12	850	9.0	0.41	6.5	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV		
				18	1600	13.5	0.59	10.0			
				26	3300	18.0	0.89	13.0			
	$\begin{aligned} & \text { J412D } \\ & \text { J432D } \end{aligned}$	5	$\begin{gathered} \text { J432DD } \\ \text { (M39016/21) } \end{gathered}$	5	64	3.7	0.7	2.6	Resistive: $1 \mathrm{~A} / 28 \mathrm{Vdc}$ Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$		
				6	125	4.8	0.8	3.0			
				9	400	8.0	0.9	4.5	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV		
				12	850	11.0	1.0	5.8	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV		
				18	1600	14.5	1.1	9.0			
				26	3300	19.0	1.3	13.0			
Ω				5	100	3.6	0.14	2.5	Resistive: 1A/28Vdc		
${ }^{-9} \text { 〇) }$				6	200	4.8	0.18	3.2	Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$		
(0) (0) ${ }^{2}$	J412DD		J432T	9	400	7.8	0.35	4.9	Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$		
$\xrightarrow[6(0)-40_{4}]{ }$	J432DD		(M28776/3)	12	850	11.0	0.41	6.5	Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV		
				18	1600	14.5	0.59	10.0			
\square				26	3300	19.0	0.89	13.0			

Schematics as viewed from terminals
P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

MILITARY QUALIFIED (JAN) RELAYS

Series J255 Electromechanical Relays

The Series J255 is an industry-standard, half-size, latching crystal can relay. It has a wide range of switching capabilities ranging from low level to 2 amps. The Series J 255 latching relay configuration is double-pole double-throw (DPDT), so the relay offers excellent switching density and versatility.
Half-Size Crystal Can Features:

- Low level to 2 amps
-Wide range of switching capabilities
- Smallest relay package capable of switching 2 amps
- Modernized assembly process
- Qualified to MIL-PRF39016/45
- Lead-free (gold-plated wire lead only)

- All welded construction

- Wire leads, gold-plated or solder-coated
- Matched seal for superior hermeticity
- Gold-plated contact assembly
- Modernized assembly process
- Advanced cleaning techniques

Relay Type	Part No.	Nominal Coil				Contact Load Rating
DPDT Magnetic-Latching		Voltage (Vdc)	Resistance (Ω	Set \& Reset Voltage (Vdc)		
Vibration				Min.	Max.	
30G, 10-2500 Hz (Sinusoidal)	$\begin{gathered} \mathrm{J} 255 \\ \text { (M39016/45) } \end{gathered}$	5	45	1.0	3.8	Resistive: 2A/28Vdc
Shock		6 12	63 254	1.3 2.6	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	Inductive: $0.75 \mathrm{~A} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Intermediate Current: 0.1A/28Vdc
100G, 6 msec half-sine (Specified Pulse)		26	1000	5.2	18.0	Lamp: 0.16A/28Vdc Low Level: 10 to $50 \mathrm{uA} / 10$ to 50 mV
Temperature	J255					
Operating \& Storage: $-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$						

Series J421 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the J421 relay one of the most versatile ultraminiature relays available.
The Series J421D and J421DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.
The Series J421 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series J421 provides a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction

Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration

- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	
SPDT Magnetic-Latching	
Diode Options	
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection	
Vibration	Shock
$\begin{gathered} 30 \mathrm{~g} \text { 's } \\ \text { to } 3000 \mathrm{~Hz} \end{gathered}$	100 g's 6 msec , half-sine
Acceleration	Temperature
50 g 's	Operating \& Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*See Schematics on Page 27

THE ONLINE DISTRIBUTTO O O ELEGTRONIC COMPONENTS

MILITARY QUALIFIED (JAN) RELAYS

Series J420 \& J422 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the J 420 \& J 422 relays some of the most versatile ultraminiature relays available.
The Series J420D/J422D and J420DD/J422DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.
The Series J420/J422 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series J420/ J422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	
DPDT Magnetic-Latching	
Grounding Options	
J420 = Individual J422 = Common	
Diode Options	
D = Internal diode for coil transient suppression DD = Internal diode for coil transient suppression and polarity reversal protection	
Vibration	Shock
$\begin{gathered} 30 \mathrm{~g} \text { 's } \\ \text { to } 3000 \mathrm{~Hz} \end{gathered}$	100 g's 6 msec , half-sine
Acceleration	Temperature
50 g 's	Operating \& Storage: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Schematics Shown with Coil A Last Energized Schematics as viewed from terminals
COIL A

J421

COIL B

COIL A
J421D

COIL B

J421DD

J422

J422D

J422DD
the on ime distributor of elegtronic components

HIGH-PERFORMANCE RELAYS

Series 412H, 422H \& 432H Electromechanical Relays - High Temperature

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, these TO-5 relays are some of the most versatile ultraminiature relays available because of their small size and low coil power dissipation.
The H Series high-temperature TO-5 relays are designed for reliable operation in elevated ambient temperatures up to $200^{\circ} \mathrm{C}$. Special material selection and processing provide assurance of freedom from contact contamination and mechanical malfunctioning that might otherwise be caused by ultra high ambient temperature conditions.
Typical applications:

> - All welded construction
> - Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
> - Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Schematics as viewed from terminals
P.U.V = Pick-Up Voltage
D.O.V = Drop-Out Voltage

432H

412 H

coila
SCHEMATIC
(Coil A Last Energized)

HIGH-PERFORMANCE RELAYS

Series 412K \& 422K Electromechanical Relays - High Shock

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the TO-5 relay one of the most versatile subminiature relays available.
The K Series high-shock TO-5 relays are designed to withstand shock levels up to 4000 g's, .5 msec duration. Special material selection and construction details provide assurance that critical elements of the relay structure and mechanism will not be permanently displaced or damaged as a result of extremely high g level shocks.
Typical applications:

- Commercial avionics aircraft control
- Commercial aircraft control systems
- Transportation systems (rail/truck)

- All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity - High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Schematics as viewed from terminals
P.U.V = Pick-Up Voltage
D.O.V = Drop-Out Voltage

HIGH-PERFORMANCE RELAYS

Series 412V \& 432V Electromechanical Relays - High Vibration

The 412 V and 432 V TO-5 relays, originally conceived and developed by Teledyne, have become the industry standards for low level switching from dry circuit to 1 ampere in high-vibration environments. Designed for high-density PC board mounting, these TO-5 relays are some of the most versatile ultraminiature relay available because of their small size and low coil power dissipation
The V Series high-vibration relays are designed to withstand vibration levels of 250 to 380 g 's at the frequencies noted, when tested on a resonant beam for 10 to 20 seconds, in the axis parallel to contact motion (x-axis), or 100 g 's $10-2000 \mathrm{~Hz}$ for 20 minutes in the x -axis. A unique magnetic circuit prevents contact opening (chatter) in excess of 10 microseconds under vibration or shock conditions.
Typical applications:

- Avionics aircraft control
- Aircraft control systems
- Transportation systems (rail/truck)
- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type
DPDT Non-Latching
Coil Type
$412 \mathrm{~V}=$ Standard Coil
$432 \mathrm{~V}=$ Sensitive Coil
Diode Options
D $=$ Internal diode for coil transient suppression DD $=$ Internal diode for coil transient suppression and polarity reversal protection Vibration
250 g's at $140 \pm 5 \mathrm{~Hz}$ 350 g's at $170 \pm 5 \mathrm{~Hz}$ 380 g's at $200 \pm 5 \mathrm{~Hz}$ Shock
150 g's 11 msec, half-sine
Acceleration
50 g's
Temperature
Operating \& Storage:
$-65^{\circ} \mathrm{C}$ to +125 C

412 V
432V

412DV
432DV

412DDV

Schematics as viewed from terminals
P.U.V = Pick-Up Voltage
D.O.V = Drop-Out Voltage

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES RF100

SERIES GRF100

Normally Open

SERIES SGRF100

Normally Open

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES GRF172

SERIES RF300/RF303

Normally Open

SERIES GRF300/GRF303

Normally Open

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES SGRF300/SGRF303

SERIES SRF300/SRF303

SERIES RF312

Normally Open

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES GRF312

SERIES SGRF312

Eye Height	Eye Width	SNR	Jitter $_{\text {p.p }}$
240.7 mV	91.44 ps	15.49	8.44 ps

SERIES RF311/RF331

Normally Open

Normally Open

Normally Open

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES GRF311

SERIES GRF342

SERIES RF180

Normally Open

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES RF341

SERIES GRF341

Normally Open

Normally Open

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES RF320/RF323

SERIES A150

Attenuated Path

Eye Height	Eye Width	SNR	Jitter $_{\text {p.p }}$
45.59 mV	64.18 ps	5.70	28.00 ps

SERIES GA150

Attenuated Path

Eye Height	Eye Width	SNR	Jitter $_{\text {p-p }}$
62.10 mV	83.23 ps	7.14	12.89 ps

Thru Path

Thru Path

APPENDIX: SIGNAL INTEGRITY EYE DIAGRAMS

SERIES A152

SERIES GA152

Attenuated Path

Eye Height	Eye Width	SNR	Jitter $_{\text {p.p }}$
124.5 mV	73.90 ps	5.23	22.22 ps

Thru Path

Thru Path

5.07	21.78 ps

PATTERN GENERATOR SETTINGS

10 Gbps Random Pulse Pattern Generator
2^{31} - 1 PRBS signal
PRBS output of $300 \mathrm{mV}_{\text {p.p }}$ (nominal)
RF PCB effect (negligible) not removed from measurement
Data shown is typical of both poles

RoHS and REACH CERTIFICATE OF COMPLIANCE

RoHS

It is hereby stated and certified that Teledyne Relays complies with the Restrictions on Hazardous Substances (RoHS) Directives to the extent herein:

Teledyne Relays does not use any of the Restricted Substances specified by the RoHS Directives (listed below) as components in TO-5 and Centigrid ${ }^{\circledR}$ Electromechanical Relay products, nor are these substances employed during any electromechanical relay manufacturing process:

Lead
Mercury
Cadmium
Hexavalent Chromium
Polybrominated Biphenyls (PBB's)
Polybrominated Diphenyl Ethers (PBDE's)
However, upon request from the Customer, relay leads may be coated with solder, which contains 60\% tin and 40\% lead.

REACH

It is hereby stated and certified that Teledyne Relays complies with the Registration Evaluation Authorization and Restriction of Chemicals (REACH) Directives to the extent stated herein:

Teledyne Relays is a manufacturer of articles. Teledyne Relays has taken the initiative to review the (39) substances that are under consideration for treatment as Substances of Very High Concern (SVHC) candidates. Teledyne Relays confirmed that our relays do not contain any of the listed substances in concentration $>0.1 \%$ weight per supplied article, substance or preparation weight.

RoHS or Non-RoHS: Your Choice!

APPENDIX: TELEDYNE RELAYS PART NUMBERING SYSTEM

RF Attenuator Relays

RF Relays (Except Attenuator Relays)

T²R Established Reliability Relays

Military Qualified (JAN) Relays

[^4]
APPENDIX: TELEDYNE RELAYS PART NUMBERING SYSTEM

Commercial Surface Mount Relays

Commercial Relays, (Except Surface Mount Relays)

High Performance Relays

If you don't see what you're looking for in this Selection Guide, contact us!

APPENDIX: Spacer Pads

Pad designation and bottom view dimensions

Height

"M4" Pad for TO-5

"M4" Pad for Centigrid ${ }^{\text {® }}$

"M9" Pad for Centigrid ${ }^{\circledR}$

For use with the following:
Dim. H
Max.

ER412, ER412D, ER412DD	. 295 (7.49)
$\begin{aligned} & \hline \text { 712, 712D, 712TN, } \\ & \text { RF300, RF310, RF320 } \end{aligned}$. 300 (7.62)
ER420, ER422D, ER420DD, 421, ER421D, ER421DD, ER422, ER422D, ER422DD, 722, 722D, RF341	. 305 (7.75)
ER431T, ER432T, ER432, ER432D, ER432DD	. 400 (10.16)
732, 732D, 732TN, RF303, RF313, RF323	. 410 (10.41)
RF312	. 350 (8.89)
ER411, ER411D, ER411DD, ER411T	. 295 (7.49)
ER431, ER431D, ER431DD	. 400 (10.16)
RF311	. 300 (7.62)
RF331	. 410 (10.41)
172, 172D	. 305 (7.75)
ER114, ER114D, ER114DD, J114, J114D, J114DD	. 300 (7.62)
ER134, ER134D, ER134DD, J134, J134D, J134DD	. 400 (10.16)
RF100	. 315 (8.00)
RF103	. 420 (10.67)
122C, A152	. 320 (8.13)
ER116C, J116C	. 300 (7.62)
ER136C, J136C	. 400 (10.16)
RF180	. 325 (8.25)
A150	. 305 (7.75)

Notes:

1. Spacer pad material: Polyester film.
2. To specify an "M4" or "M9" spacer pad, refer to the mounting variants portion of the part numbering example in the applicable datasheet.
3. Dimensions are in inches (mm).
4. Unless otherwise specified, tolerance is $\pm .010^{\prime \prime}(.25 \mathrm{~mm})$.
5. Add $10 \mathrm{~m} \Omega$ to the contact resistance shown in the datasheet.
6. Add 0.01 oz . $(0.25 \mathrm{~g})$ to the weight of the relay assembly shown in the datasheet.

APPENDIX: Spreader Pads

Pad designation and bottom view dimensions

Height

"M" Pad 5/ 6/

For use with the following:

ER411T, J411T, ER412, ER412D ER4122D, J412, J412D, J412DD ER412T, J412T	.388 (9.86)
712, 712D, 712TN	.393 (9.99)
ER431T, J431T, ER432, ER432D ER432DD, J432, J432D, J432DD ER432T, J432T	.493 (12.52)
732, 732D, 732TN	.503 (12.78)
ER420, J420, ER420D, J420D ER420DD, J420DD, ER421, J421 ER421D, J421D, ER421DD J422D, ER422DD, J422DD, 722	.398 (10.11)
ER411T ER412, ER412D, ER412DD J412, J412D, J412DD	.441 (11.20)
712, 712D	.451 (11.46)
ER421, ER421D, ER421DD 722, 732D	.451 (11.46)
ER431T ER432, ER432D, ER432DD	.546 (13.87)
732, 732D	.556 (14.12)
ER411, ER411D, ER411DD, ER411TX ER412X, ER412DX, ER412DDX ER412TX	.388 (9.86)
$712 X, 712 D X, 712 T N X$.393 (9.99)
ER420X, ER420DX, ER420DDX ER4211, ER421DX, ER421DDX ER4222, ER422DX ER422DDX, 722X, 722DDX	.503 (12.11)
ER431, ER431D, ER431DD ER431TX ER432X, ER432DX, ER432DDX ER432TX	
$732 X, ~ 732 D X, ~ 732 T N X ~$	$.52) ~$

Notes:

1. Spreader pad material: Diallyl Phthalate.
2. To specify an "M", "M2" or "M3" spreader pad, refer to the mounting variants portion of the part number example in the applicable datasheet.
3. Dimensions are in inches (mm).
4. Unless otherwise specified, tolerance is $\pm .010^{\prime \prime}(0.25 \mathrm{~mm})$.

5/. Add $25 \mathrm{~m} \Omega$ to the contact resistance shown in the datasheet.
$\underline{6} /$. Add .01 oz . $(0.25 \mathrm{~g})$ to the weight of the relay assembly shown in the datasheet.
71. Add $50 \mathrm{~m} \Omega$ to the contact resistance shown in the datasheet.

8/. Add $0.025 \mathrm{oz}(0.71 \mathrm{~g})$ to the weight of the relay assembly shown in the datasheet.
9/. M3 pad to be used only when the relay has a center pin (e.g. ER411M3-12A, 722XM3-26.)

APPENDIX: Ground Pin Positions

TO-5 Relays:

ER411T, ER412, ER412T, ER420, ER421, ER422, ER431T,
ER432, ER432T, 712, 712TN, 400H, 400K, 400V, RF300, RF303, RF341, RF312, RF310, RF313, RF320, RF323

TO-5 Relays:
ER411, ER431, RF311, RF331

Centigrid $®$ Relays:

RF100, RF103, ER114, ER134, 172

Centigrid® Relays:
RF180, ER116C, 122C, ER136C

NOTES

1. Terminal views shown
2. Dimensions are in inches (mm)
3. Tolerances: $\pm .010(\pm .25)$ unless otherwise specified
4. Ground pin positions are within .015 (0.38) dia. of true position
5. Ground pin head dia., $0.035(0.89)$ ref: height $0.010(0.25)$ ref.
6. Lead dia. 0.017 (0.43) nom.

APPENDIX: Teledyne Relays T^{2} R Program

Teledyne Relays' Tit program was developed to provide the JAN relay user an alternate means of specifying and procuring established reliability relays. The form, fit and function of a Tit relay is the same as that of its JAN counterpart. Titit program requirements differ in certain regimens/tests found in both MIL-PRF-28776 and MIL-PRF-39016 that add cost but no value to the relay.

This program parallels the military specifications in most aspects. The components that make up such a program are intricate and varied. Furthermore, there are additional options of high value for design, manufacturability and operation of high reliability assemblies. The following page presents a table that compares the 100% screening performed on JAN relays and \boldsymbol{T} 部 relays prior to shipment.

Other significant highlights of the Tir program include:

- Two unique screening levels
- The ability to define lead finish
- Spacer pad options which may not be available in military specifications
- Ground pin options which may not be available in military specifications
- Reduced lead time
- Reduced cost

The program is fully defined for both general product requirements and detailed product requirements in the following Teledyne Relays specifications:

TR-R-1

TR-STD-1
TR-STD-2
TR-ERL-1
TR-R-1/XXX
TR Supplement
Copies of these documents are available from Teledyne Relays. We suggest that users check with Teledyne Relays from time to time to assure that they have the latest issue.

Can't Find What You Need?

Check out our full line of relays and switches. Order literature online at http://www.teledynerelays.com/lit-request.asp

APPENDIX: Teledyne Relays T²R Program

INSPECTION	Screening Levels			
	T薷 A Level 1.5\%/10K Cycles	THi B Level .75\%/10K Cycles	JAN L Level 3\%/10K Cycles	JAN M Level 1\%/10K Cycles
Subgroup 1				
Screening, Internal Moisture AQL ${ }^{1}$	\checkmark	\checkmark	\checkmark	\checkmark
Vibration (Sinusoidal) AQL ${ }^{1}$			\checkmark	
Vibration (Sinusoidal) 100\%		\checkmark		\checkmark
Screening, Burn-In (Hybrids only)			\checkmark	\checkmark
Screening, Run-In (Room Temperature)	\checkmark			
Screening, Run-In ($+125^{\circ} \mathrm{C}$ and $-65^{\circ} \mathrm{C}$)		\checkmark	\checkmark	\checkmark
Subgroup 2				
Coil Resistance or Coil Current	\checkmark	\checkmark	\checkmark	\checkmark
Insulation Resistance	\checkmark	\checkmark	\checkmark	\checkmark
Dielectric Withstanding Voltage	\checkmark	\checkmark	\checkmark	\checkmark
Static Contact Resistance	\checkmark	\checkmark	\checkmark	\checkmark
Pickup and Dropout or Set and Reset Voltage	\checkmark	\checkmark	\checkmark	\checkmark
Operate and Release or Set and Reset Time	\checkmark	\checkmark	ν	\checkmark
Hold Voltage			ν	\checkmark
Turn-On and Turn-Off Time (Hybrids only)	\checkmark	\checkmark	\checkmark	\checkmark
Contact Bounce Time	\checkmark		\checkmark	
Contact Stabilization Time		\checkmark		\checkmark
Turn-On Current (T Hybrids only)	\checkmark	\checkmark	\checkmark	\checkmark
Turn-On Voltage (C Hybrids only)	\checkmark	\checkmark	\checkmark	\checkmark
Turn-Off Voltage (Hybrids only)	\checkmark	\checkmark	\checkmark	\checkmark
Coil Transient Suppression (D, DD and Hybrids only)	\checkmark	\checkmark	\checkmark	\checkmark
Diode Blocking Integrity (DD only)	\checkmark	\checkmark	\checkmark	\checkmark
Zener Voltage (C Hybrid only)	\checkmark	\checkmark	ν	\checkmark
Neutral Screen (Latching Relays only)	\checkmark	\checkmark	\checkmark	\checkmark
Break Before Make Verification			ν	\checkmark
Contact Simultaneity			\checkmark	\checkmark
Subgroup 3				
Solderability 2 Samples per Daily Solderability Inspection Lot	\checkmark	\checkmark	\checkmark	\checkmark
Leak Test	\checkmark	\checkmark	\checkmark	\checkmark
External Visual and Mechanical Inspection 2/Lot for Dimension and Weight Check	\checkmark	\checkmark	\checkmark	\checkmark

Teledyne Relays: Because in deep space there is no acceptable failure rate

Teledyne Relays has a long history of supplying High Reliability relays for use in space bound vehicles. From the earliest deep space probes, such as
Voyager I, now nearing 21 billion miles out in space, to the next generation of probes scheduled for the future, Teledyne Relays continues to be the preeminent supplier of Hi-Reliability relays to the space market.

Teledyne Relays Hi-Reliability Specification:

TR-HIREL-1

- Eliminates the need for customers to develop and maintain specifications.
- Manufacturing and Quality Assurance requirements are fully defined and documented.
- Meets the general requirements of both ESA/SCC and NASA/GSFC documents.
- Offers options for 100% Group A screening
- Offers options for 3 levels of Lot Acceptance Testing (LAT).

Teledyne Screening Document 0-40-837
NASA approved screening regimen based on NASA/GSFC S-311-P. 754

RELAY TYPES

TO-5 Magnetic-Latching Relays
TO-5 Non-Latching Relays
TO-5 Magnetic-Latching, High-Shock Relays
TO-5 Non-Latching, High-Shock Relays
TO-5 Non-Latching, High-Vibration Relays

HI-REL SCREENING CAPABILITIES

100\% Open Electrical Inspection
100\% Precap Inspection
Fully Automated Small Particle Inspection
(Millipore Clean)
Asynchronous Miss Test
Coil Continuity
Sine Vibration
Random Vibration
High/Low Run In
(Miss Test) $-65^{\circ} \mathrm{C} \pm 125^{\circ} \mathrm{C}$
Radiographic Inspection
Mechanical Shock Test
Thermal Shock Test
Acceleration
Radiographic Inspection (X-ray)
Mechanical Shock Test
Thermal Shock Test
Acceleration
Load Banks for a Variety of Life Test Load
Serialized Printed Electrical Data
Continuous Life Testing
Environmental Testing
Vertical Integration
For information or answers to your questions, please visit our website.

APPENDIX: Authorized Distributors

NORTH AMERICA

ALLIED ELECTRONICS

Tel: (800) 433-5700
www.alliedelec.com/search.asp
ASAP ELECTRONICS
Tel: (800) 477-1272
www.asapelectronics.com

AVNET

Tel: (800) 772-8638
www.em.avnet.com

MASTER DISTRIBUTORS

Tel: (888) 473-5297
www.onlinecomponents.com

MOUSER ELECTRONICS

Tel: (800) 346-6873
www.mouser.com
RICHARDSON ELECTRONICS
Tel: (800) 737-6937
www.rell.com
SHERBURN ELECTRONICS
Tel: (800) 366-3066
www.sherburn.com
BELGIUM \& LUXEMBOURG
Nijkerk Electronics B.V.
Tel: +32 (0) 35447066
E-mail: alain.huysmans@ nijkerk.be www.nijkerk-ne.com

CHINA \& HONG KONG
Fiaco Microelectronics
Beijing Office
Tel: 86-10-6503-2171
E-mail: beijing@fiaco.com
Bright Toward Industrial Co., Ltd.
Beijing Office
Tel: 86-10-8200-4979
E-mail: linden_wang@toward.com.cn
CZECH REPUBLIC
Amtek spol. s.r.o.
Tel: +420 547125555
E-mail: amtek@amtek.cz
www.amtek.cz
DENMARK
ARROW Denmark A/S
Tel: +45 (0) 70102211
E-mail: jbh@arrownordic.com www.arrowne.com

ESTONIA

ARROW Estonia
Tel: +372 6774250
E-mail: estonia@arrownordic.com
www.arrowne.com
FINLAND
ARROW Finland Oy
Tel: +358 93212831
www.arrowne.com

FRANCE

ARROW France
Tel: +33 149784960
E-mail: ralves@arrowfrance.com

GERMANY

Adelco Elektronik GmbH
Tel: +49 (0) 410661040
E-mail: adelco@t-online.de
www.adelco-elektronik.de

Hot Electronic GmbH
Tel: +49 (0) 896662836 E-mail: info@hot-electronic.de www.hot-electronic.de

MRC Components oHG
Tel: +49 (0) 816198480
E-mail: info@mrccomponents.de www.mrccomponents.de

Zettler electronics GmbH
Tel: +49 (0) 89800 97-0
E-mail: office @ zettlerelectronics.com www.zettlerelectronics.com

INDIA
Specsynergy Technologies, Inc.
San Jose, CA (Main Office)
Tel: (408) 954-8474 x105
E-mail: karthik@spectraus.com
Specsynergy Technologies, Inc
New Delhi Office
Tel: 911125860752
E-mail: malik@specsynergytech.com
ISRAEL
STG International Ltd.
Tel: +972 (0) 37331400
E-mail: davidb@stggroup.co.il
www.stggroup.co.il
ITALY
SINCRON s.r.I.
Tel: +39 0295384218
E-mail: ermanno.baschieri@sincron.it www.sincron.it

JAPAN

Comcraft Corporation Tokyo
Tel: 81-3-3395-5553
E-mail: trcsales@comcraft.co.jp www.comcraft.co.jp

Comcraft Corporation Osaka

Tel: 81-6-6396-7722
E-mail: trcsales@comcraft.co.jp
www.comcraft.co.jp
KOREA
Electro-Comm USA
Tel: (818) 848-7790
E-mail: briansong@anyeparts.com www.anyeparts.com

Electro-Comm SEOUL
Tel: 82-31-713-4216
E-mail: tony_jang@anyeparts.com www.anyeparts.com

LATVIA
ARROW Latvia
Tel: +371 7311490
E-mail: latvia@ arrownordic.com
www.arrowne.com
LITHUANIA
ARROW Lithuania
Tel: +370-37-759015
E-mail: lithuania @arrownordic.com www.arrowne.com

MALAYSIA
Device Electronics PTE, Ltd.
Tel: (603) 7880 8626/8636
E-mail: ngthomas@devicelect.com

NETHERLANDS

Nijkerk Electronics B.V.
Tel: +32 (0) 35447066
E-mail: alain.huysmans@nijkerk.be
www.nijkerk-ne.com

NORWAY

ARROW Norway A/S
Tel: +47 (0) 21306532
E-mail: stondevoldshagen @ arrownordic.com
www.arrowne.com
RUSSIA
Petersburg Electronic Company JSC
Tel: +7 8124488777
E-mail: dkizha@ pec.spb.ru
www.pec.spb.ru

SINGAPORE

Device Electronics PTE, Ltd.
Tel: 65-288 6455
E-mail: ngthomas@devicelect.com
SOUTH AFRICA
RF Design
Tel:
National Smart Call: 0861753357
Cape Town: +27 (0) 215558400
Gauteng: +27 (0) 116952200
Durban: +27 (0) 312664534
www.rfdesign.co.za
SWEDEN
ARROW Sweden
Tel: +46 856265500
E-mail: aekstrom-winroth@arrownordic.com www.arrowne.com

MicroComp Nordic AB

Tel: +46 86073910
E-mail: info @ microcomp-nordic.se
www.menab.se

OEM Electronics

Tel: +46 752424562
E-mail: ulf.nygren@oemelectronics.se
www.oemelectronics.se

SWITZERLAND

ENA AG

Tel: +41 566342834
E-mail: rolf.hochstrasser@ena.ch www.ena.ch

TAIWAN

Bright Toward Industrial Co., Ltd.
Tel: +886-2-822-76000
E-mail: philip@relays.com.tw
www.relays.com.tw
UNITED KINGDOM
Advanced Power Components plc
Tel: +44 (0) 1480226603
E-mail: angiep@apc-plc.co.uk
www. apc-plc.co.uk
Arrow Electronics UK Ltd.
Tel: +44 (0) 1279626777
www.arrowne.com
Willow Technologies Ltd.
Tel: +44 (0) 1342835234
E-mail: sales@willow.co.uk
www.willow.co.uk
2001 Electronic Components Ltd.
Tel: +44 (0) 1438742001
E-mail: sales@2001elec.co.uk
www.2001elec.co.uk

APPENDIX: Authorized North American Representatives

REPRESENTATIVES

Cain Technology

Southern California 2629 Townsgate Road, Suite 200
Westlake Village, CA 91361
Tel: 805-496-5702
Fax: 805-496-6702
www.caintech.com
Cee-Jay Micro Ltd.
Eastern Canada
155 Terence Matthews Crescent Unit 2
Kanata, Ontario
Canada K2M 2A8
Tel: 613-599-5626
www.cjmicro.com
CentraMark Technical Sales

Associates

$T X$, OK and LA
3333 Naaman School Road
Garland, TX 75040
Tel: 972-414-8188
Fax: 972-414-6788
www.cmatex.com

Comp-Tech Sales

Northern New Jersey, Metro New York, Long Island 232 Boulevard, Suite 11 Hasbrouck Heights, NJ 07604
Tel: (201) 288-7400
Fax: (201) 288-7583
www.comp-techsales.com

Eagle Sales Corporation

MD, VA, WA DC, Eastern PA,
Southern NJ
3545 Ellicott Mills Drive, Suite 202
Ellicott City, MD 21043
Tel: (410) 203-2317
Fax: (410) 203-2318
www.eaglesales.net
EK \& Associates, Inc.
IL, WI
887 E. Wilmette Road, Suite J
Paltine, IL 60074
Tel: 847-776-1758
Fax: 847-776-8221
www.ekrep.com
Electronic Representatives, Inc.
IN, OH, MI, KY, West PA
6801 Lake Plaza Drive, Suite D402
Indianapolis, IN 46220
Tel: (317) 915-1414
Fax: (317) 915-1216
www.electronicreps.com
Essig \& Associates, Inc.
lowa
809 N. Compton Drive
Hiawatha, IA 52233
Tel: (319) 363-8703
Fax: (319) 363-7224
www.essigassoc.com

HHP Associates, Inc.

Florida
1355 S. International Pkwy, Suite 2471
Lake Mary, FL 32746
Tel: 407-829-8792
Fax: 407-829-8798
www.hhpai.com

Jay Stone \& Associates
Northern California
2109 O'Toole Avenue, Suite M
San Jose, CA 95131
Tel: 408-428-2500
Fax: 407-428-9000
www.jsarep.com
The MacInnis Company
ME, NH, RI, CT, MA, VT
375 Vanderbilt Avenue
Norwood, MA 02062
Tel: (781) 762-8090
Fax: (781) 762-5059
www.macinnis-company.com

MINK Associates

NE, KA, MO
10100 Santa Fe, Suite 311
Overland Park, KS 66212
Tel: (913) 341-8309
Fax: (913) 341-2605
www.minkassoc.com
Precision Marketing Incorporated
MS, AL, TN, GA,NC and SC
5497 Wiles Road, Suite 204
Coconut Creek, FL 33073
Tel: (954) 752-1700
Fax: (954) 973-6335
www.precision-marketing.com
RPI-Apex Associates, Inc.
Upstate New York
(excluding Long Island)
54 Andover Street Andover, MA 01810
Tel: 978-475-7055
Fax: 978-475-4749
www.rpi-apex.com

Sea-Port Tech Sales
WA, OR, ID, Western Canada
3630 130th Ave. NE
Bellevue, WA 98005
Tel: (425) 702-8300
Fax: (425) 702-8388
www.seaporttech.com

Synergy Sales

Representatives, Inc.
MN, ND, SD
5401 Gamble Drive, Suite \#105
St. Louis Park, MN 55416
Tel: (952) 544-1686
Fax: (952) 545-2935
www.synergyreps.com

Westrep Arizona

AZ, NM, Clark County, NV \&
El Paso, TX
6105 S. Ash Avenue, Suite A8
Tempe, AZ 85283
Tel: (480) 820-9932
Fax: (480) 820-9962
www.westrepaz.com

HEADQUARTERS
12525 Daphne Ave.
Hawthorne, CA 90250
Phone: (323) 777-0077 or (800) 284-7007
Fax: (323) 241-1287
E-mail: relays@teledyne.com

www.teledynerelays.com (800) 284-7007

EUROPE
9-13 Napier Road
Wardpark North
Cumbernauld G68 OEF
Scotland UK
Phone: +44 (0) 1236453124
Fax: +44 (0) 1236780651
E-mail: sales_europe@teledyne.com

wwwiteledyne-europe.com +44 (0) 1236453124

[^0]: See specific series for additional features and options

[^1]: Schematics as viewed from terminals

[^2]: Schematics as viewed from terminals

[^3]: Schematics as viewed from terminals

[^4]: General Note: Parts ordered without suffix may be supplied with Solder-Coated or Gold-Plated leads
 Parts ordered with Solder-Coated leads will have (Sn60/Pb40)
 ${ }^{2}$ Parts ordered with RoHS Solder-Coated leads will have (Sn99.3/Cu0.7)
 ${ }^{3}$ Not Applicable to GRF relays

