Electromechanical Relays Selection Guide

A Teledyne Technologies Company

Switching Solutions

Teledyne Relays has been the world's innovative leader in the manufacture of ultraminiature, hermetically sealed, electromechanical and solid-state switching products for more than 40 years. The company's comprehensive product line meets a wide range of requirements for defense and aerospace, industrial, commercial, medical and RF & wireless applications.

Business Focus

- MIL QPL & COTS Solid-State Relays
- MIL QPL & COTS Electromechanical Relays
- HiRel (Space) Electromechanical Relays
- RF & Microwave Relays & Coaxial Switches
- Industrial Solid-State Relays
- Switching Matrices

Markets

- Commercial & Military Aviation
- Defense & Aerospace
- Telecom/Communications (Wireless)
- Instrumentation & Test
- Industrial Power & Motion Control
- Medical Applications

Product Assurance

Under an aggressive Total Quality Management (TQM) program, Teledyne Relays has embraced a "continuous improvement" culture. With recognized certifications such as AS/EN/JISQ 9100 - Revision B and ISO 9001:9002, DSCC MIL-STD-790 and Boeing D6-82479 Appendix A, Teledyne Relays has become a primary supplier of switching solutions with the highest quality and reliability to industry leaders around the world.

Technical Service & Customer Support

Teledyne Relays provides easy access to technical service and customer support. Our websites make it easy to find technical information, buy products and even get e-mail responses within 24 hours. Switching solutions are only a mouse click away at www.teledynerelays.com or at teledyne-europe.com. Information about coax switches is available at www.teledynecoax.com.

Teledyne Relays offer superior signal integrity up to 12 Gbps. See the RF relays section in our website.

Table of Contents

	RF RELAYS	
Series	Description	Page
RF100/RF103	High Repeatability, Broadband Centigrid® Relays, Non-Latching DPDT	4
GRF172	Surface-Mount Centigrid® RF Relays, Non-Latching DPDT	4
RF300/RF303	High Repeatability, Broadband TO-5 Relays, Non-Latching DPDT	5
RF312	High Repeatability, Broadband TO-5 Relays, Non-Latching DPDT	6
RF311/RF331	High Repeatability, Broadband TO-5 Relays, Non-Latching SPDT	7
GRF342	Surface-Mount TO-5 RF Relays, Magnetic-Latching DPDT	7
RF180	Broadband RF Relays, Magnetic-Latching DPDT	8
RF341	Broadband TO-5 RF Relays, Magnetic-Latching SPDT	8
RF310/RF313	High Repeatability TO-5 Relays, Normally Closed, Bypass	9
RF320/RF323	High Repeatability TO-5 Relays, Normally Open, Bypass	9
A150	Broadband Attenuator RF Relay	10
A152	Broadband Attenuator RF Relay	10
	COMMERCIAL RELAYS	
122C	Centigrid® Relays (CMOS Compatible), Magnetic-Latching DPDT	11
172	Centigrid® Relays, Non-Latching DPDT	11
712	TO-5 Relays, Non-Latching DPDT	12
722	TO-5 Relays, Magnetic-Latching DPDT	12
732	TO-5 Relays, Non-Latching Sensitive DPDT	13
	COMMERCIAL SURFACE-MOUNT RELAYS	
S114	Surface-Mount Centigrid® Relays, Non-Latching DPDT	14
S134	Surface-Mount Centigrid® Relays, Non-Latching Sensitive DPDT	14
S172	Surface-Mount Centigrid® Relays, Non-Latching DPDT	15
S422	Surface-Mount TO-5 Relays, Magnetic-Latching DPDT	15
	ESTABLISHED RELIABILITY RELAYS	
ER114	Centigrid® Relays, Non-Latching DPDT	16
ER116C	Centigrid® Relays (CMOS Compatible), Non-Latching DPDT	16
ER134	Centigrid® Relays, Non-Latching Sensitive DPDT	17
ER136C	Centigrid® Relays (CMOS Compatible), Non-Latching Sensitive DPDT	17

See specific series for additional features and options

Table of Contents

	ESTABLISHED RELIABILITY RELAYS (continued)	
Series	Description	Page
ER411	TO-5 Relays, Non-Latching SPDT	18
ER431	TO-5 Relays, Non-Latching Sensitive SPDT	18
ER412	TO-5 Relays, Non-Latching DPDT	19
ER432	TO-5 Relays, Non-Latching Sensitive DPDT	19
255	Half-Size Crystal Can, Magnetic-Latching DPDT	20
ER421	TO-5 Relays, Magnetic-Latching SPDT	20
ER420	TO-5 Relays, Magnetic-Latching DPDT	21
ER422	TO-5 Relays, Magnetic-Latching DPDT	21
	MILITARY QUALIFIED (JAN) RELAYS	
J114	Centigrid® Relays, Non-Latching DPDT	22
J116C	Centigrid® Relays (CMOS Compatible), Non-Latching DPDT	22
J134	Centigrid® Relays, Non-Latching Sensitive DPDT	23
J136C	Centigrid® Relays (CMOS Compatible), Non-Latching Sensitive DPDT	23
J411	TO-5 Relays, Non-Latching SPDT	24
J431	TO-5 Relays, Non-Latching Sensitive SPDT	24
J412	TO-5 Relays, Non-Latching DPDT	25
J432	TO-5 Relays, Non-Latching Sensitive DPDT	25
J255	Half-Size Crystal Can, Magnetic-Latching DPDT	26
J421	TO-5 Relays, Magnetic-Latching SPDT	26
J420	TO-5 Relays, Magnetic-Latching DPDT	27
J422	TO-5 Relays, Magnetic-Latching DPDT	27
	HIGH-PERFORMANCE RELAYS	
412H/432H	High-Temperature (200°C) TO-5 Relays, Non-Latching DPDT	28
422H	High-Temperature (200°C) TO-5 Relays, Magnetic-Latching DPDT	28
412K	High-Shock TO-5 Relays, Non-Latching DPDT	29
422K	High-Shock TO-5 Relays, Magnetic-Latching DPDT	29
412V/432V	High-Vibration TO-5 Relays, Non-Latching DPDT	30

See specific series for additional features and options

Table of Contents

APPENDIX	
Description	Page
Signal Integrity Eye Diagrams	31-38
RoHS and Reach Certificate of Compliance	39
Part Numbering System	40-41
Spacer Pad Options	42
Spreader Pad Options	43
Ground Pin Options	44
Established Reliability Program	45-46
Teledyne Relays HI-REL Program	47
Authorized Distributors	48
Authorized North American Representatives	49

Teledyne Relays offers a variety of options to customize and meet your specific design needs.

See specific series for additional features and options

Series RF100/RF103 Electromechanical Relays

The RF100 and RF103 Centigrid® relays are designed to provide improved RF signal repeatability over the frequency range.

The GRF100 and GRF103 Centigrid® relays feature a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- · Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth

configurations

The SGRF100 and SGRF103 Centigrid® relays extend performance advantages over similar RF devices that Through-hole or surface-mount simply offer formed leads for surface mounting.

Relay Type			Nom	inal Coil		Т	ypical RF P	erformance	
DPDT Non-Latching	Part I	lo.	Voltage	Resistance	Frequency	VSWR	Isola	tion (dB)	Insertion Loss
Coil Type			(Vdc) (Ω)	(GHz)	(max)	Pole to Pole (min)	Across Contacts (min)	(dB) (max)	
100 = Standard Coil 103 = Sensitive Coil	15-82	RF100	5	50	DC-1	1.1 : 1	35	25	0.2
Mounting	RF100		12	390	1-2	1.5 : 1	30	20	0.5
RF = Thru-hole	Z-5	RF103	5	100	2-3	1.6 : 1	30	20	0.6
GRF = Surface-Mount (Stub) SGRF = Surface-Mount (J-Lead)	111	RF 103	12	800					
Temperature		GRF100	5	50	DC-1	1.1 : 1	45	30	0.2
Storage: -65°C to +125°C	500	GREIUU	12	390	1-3	1.2 : 1	40	25	0.3
Operating: -55°C to +85°C	0.5	GRF103	5	100	3-4	1.3 : 1	35	25	0.6
		GRF103	12	800	4-6	2.2 : 1	30	25	1.2
		SGRF100	5	50	DC-1	1.2 : 1	35	30	0.2
	Pa a	5GHF 100	12	390	1-3	1.3 : 1	30	30	0.7
	103	SGRF103	5	100	3-4	1.4 : 1	25	25	0.8
			12	800	4-6	1.8 : 1	25	25	1.0

Series GRF172 Electromechanical Relays

The GRF172 Centigrid® relay is a hermetically sealed, armature relay for 2.5GHz RF applications. Its low profile height .330" (8.38 mm) and .100" (2.54 mm) grid spaced terminals make it an ideal choice where extreme packaging density and/or close PC board spacing are required. The GRF172 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-topole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability. The GRF172 extends performance advantages over similar RF devices that simply offer formed leads for surface mounting.

The Series GRF172D has an internal discrete silicon diode for coil suppression.

- · Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
- configurations
- **Relay Type Nominal Coil Typical RF Performance** DPDT Non-Latching Isolation (dB) Part No. **Resistance** Frequency **Insertion Loss** Voltage VSWR Pole to Pole Across Contacts (min) (min) (Vdc) (GHz) (dB) (max) **Coil Type (**Ω**)** (max) 172 = Standard Coil 5 50 DC-1 30 0.2 1.1:1 45 **Diode Option GRF172** 12 390 1-2 1.2:1 40 25 0.3 D = Internal diode for coil GRF172D transient suppression 26 100 2-2.5 1.2:1 40 25 0.3 Mounting GRF = Surface-Mount (Stub) Temperature @7 10 6 ″⊚ 0 0 Storage: -65°C to +125°C စို ĝ _@² 'ଡ୍ Operating: -55°C to +85°C 5⊚ <mark>| ⊚| ΄</mark> @3 30 GRF172 GRF172D

Schematics as viewed from terminals

Series RF300/RF303 Electromechanical Relays

The RF300 and RF303 TO-5 relays are designed to provide improved RF signal repeatability over the frequency range.

The GRF300 and GRF303 TO-5 relays feature a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability. The SGRF300 and SGRF303 TO-5 relays extend performance advantages over similar RF devices that

- Excellent Signal integrity up to 10Gbps+
 Hermetically Sealed
- High Resistance to ESD
 Metal Enclosure for EMI shielding
 High Repeatability
- Broader bandwidth
- Through-hole or surface-mount

Relay Type						configurations					
	Part No.		Nominal Coil			Ту	pical RF Pe	erformance			
DPDT Non-Latching			Voltage	Resistance	Frequency	VSWR	Isolation (dB)		Insertion Loss		
Coil Type			(Vdc)	(Ω)	(GHz)	(max)	Pole to Pole (min)	Across Contacts (min)			
300 = Standard Coil	6.57	RF300	5	50	DC-1	1.1 : 1	30	25	0.2		
303 = Sensitive Coil	NF 30	RF300D	12			1.1 : 1	25	20	0.3		
Diode Option	-12 0814	111 3000		390	1-2						
D = Internal diode for coil	396	RF303	5	100	2-3	1.2 : 1	25	20	0.4		
transient suppression		RF303D	12	850							
DD = Internal diode for coil		GRF300	5	50	DC-1	1.1 : 1	40	30	0.2		
transient suppression and polarity reversal protection		GRF300D	12	390	1-3	1.1 : 1	40	30	0.2		
Mounting	Ta Post	GRF303	5	100	3-4	1.3 : 1	30	30	0.6		
RF = Thru-hole GRF = Surface-Mount (Stub)		GRF303D	12	850	4-6	1.6 : 1	25	25	1.0		
SGRF = Surface-Mount (J-Lead)		SGRF300	5	50	DC-1	1.2 : 1	40	30	0.2		
SRF = Surface Mount (J-Lead)	A Partie	SGRF300D	12	390	1-3	1.2 : 1	40	30	0.4		
Temperature	200	10	405	SGRF303	5	100	3-4	1.2 : 1	20	25	0.8
Storage: -65°C to +125°C Operating: -55°C to +85°C		SGRF303D	12	850	4-6	1.8 : 1	10	20	1.0		
operandy to the to t	1	SRF300	5	50	DC-1	1.1 : 1	25	25	0.5		
	140 - 199 0 - 199 0 - 199 0 - 199 0 - 199	SRF300D	12	390	1-3	1.5 : 1	25	25	0.5		
		SRF303	5	100	3-4	2.0 : 1	15	15	3.0		
		SRF303D	12	850	4-6	2.5 : 1	10	10	4.0		

For RF300DD & RF303DD values please see Datasheet

300 303

303D

300DD 303DD

Schematics as viewed from terminals

Series RF312 Electromechanical Relays

The RF312 is designed to improve upon the RF300/RF303 relay's high frequency performance. The RF312 offers monotonic insertion loss over to 8GHz. This improvement in RF insertion loss over the frequency range, makes these relays highly suitable for use in attenuator and other RF circuits.

The GRF312 is designed to improve upon the GRF300/GRF303 relay's high frequency performance. The GRF312 TO-5 relay features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

nimecol

- Excellent Signal integrity up to 12Gbps+
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding High Repeatability
- Broader bandwidth Through-hole or surface-mount
- configurations

Relay Type			Nom	inal Coil	Typical RF Performance					
DPDT Non-Latching	Part N	о.	Voltage	Resistance	Frequency	VSWR	Isolat	tion (dB)	Insertion Loss	
Coil Type			(Vdc)	(Ω)	(GHz)	(max)	Pole to Pole (min)	Across Contacts (min)	(dB) (max)	
312 = Standard Coil	(S-82)				DC-2	1.2 : 1	30	20	0.2	
Mounting	RE312-5	RF312	5	50	2-4	1.2 : 1	25	20	0.4	
RF = Thru-hole GRF = Surface-Mount (Stub)	22847		RF312	RF312	12	390	4-6	1.3 : 1	25	20
SGRF = Surface-Mount (J-Lead)	1111			000	6-8	1.4 : 1	20	20	0.8	
Temperature	a bits		_		DC-2	1.4 : 1	40	30	0.3	
Storage: -65°C to +125°C Operating: -55°C to +85°C		GRF312	5	50	2-4	1.4 : 1	40	30	0.5	
	7481 -2453	GHF312	12	390	4-6	1.5 : 1	35	30	1.0	
			12	390	6-8	1.5 : 1	35	30	1.5	
			5	50	DC-2	1.2 : 1	40	30	0.2	
	0005310	5	50	2-4	1.2 : 1	35	30	0.5		
	19244	SGRF312	10		4-6	1.3 : 1	30	25	1.0	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12	390	6-8	1.5 : 1	30	25	1.5	

Schematics as viewed from terminals

Series RF311/RF331 Electromechanical Relays

The RF311/RF331 relays are designed to provide improved RF signal repeatability over the frequency range. These relays are highly suitable for use in attenuator and other RF circuits.

The GRF311 offers monotonic insertion loss to 8GHz. This improvement in RF insertion loss over the frequency range makes these relays highly suitable for use in attenuator and other RF circuits. The GRF311 features a unique ground shield that isolates and shields each lead to ensure excellent

contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 10Gbps
- · Hermetically Sealed
- High Resistance to ESD Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth Through-hole or surface-mount
 - configurations

Relay Type			Nomi	nal Coil	Typical RF Performance					
SPDT Non-Latching	Part N	lo.	Voltage (Vdc)	Resistance	Frequency	VSWR	Isolation Across Contacts (dB)	Insertion Loss		
Coil Type				(Ω)	(GHz)	(max)	(min)	(dB) (max)		
311 = Standard Coil	and the second s	all the second s		63	DC-2	1.3 : 1	25	0.2		
331 = Sensitive Coil	00000		12	500	2-4	1.6 : 1	20	0.4		
Mounting	"SA	RF311	26	2000	4-6	1.6 : 1	20	0.6		
RF = Thru-hole GRF = Surface-Mount (Stub)					6-8	1.6 : 1	15	0.8		
Temperature			5	63	DC-2	1.2 : 1	30	0.3		
Storage: -65°C to +125°C Operating: -55°C to +85°C	8	GRF311	12	500	2-4	1.5 : 1	25	0.5		
		GHF311	26	2000	4-6	1.5 : 1	25	0.7		
					6-8	1.6 : 1	20	1.0		
4 0 5 0 1 311	and the second s		5	125	DC-2	1.3 : 1	25	0.2		
$\begin{pmatrix} 4 & 0 & 3 & 0 \\ 0 & 0 & 2 \\ 3 & 0 & 0 & 2 \end{pmatrix} = 331$		DEad	12	1025	2-4	1.6 : 1	20	0.4		
		RF331	26	4000	4-6	1.6 : 1	20	0.6		

Series GRF342 Electromechanical Relays

The Series GRF342 relay is a hermetically sealed, RF relay designed from inception for surface mount applications. This magnetic-latching relay features extremely low internal circuit losses for exceptional time and frequency domain response characteristics through and beyond the UHF spectrum and into the S band. The GRF342 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides an RF ground interface that results in improved high-frequency performance as well as parametric repeatability. The GRF342 extends performance advantages over similar RF devices that simply offer formed leads for surface mounting.

Excellent Signal integrity up to 10Gbps

15

0.8

- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
- configurations

Relay Type		Nom	Nominal Coil		Typical RF Performance					
DPDT Magnetic-Latching	Part No.	Voltage	ge Resistance) (Ω)	Frequency (GHz)	VSWR	Isola	Insertion Loss			
Coil Type		(Vdc)			(max)	Pole to Pole (min)	Across Contacts (min)	(dB) (max)		
342 = Standard Coil	distance of the	5	50	DC-2	1.1 : 1	40	35	0.3		
Mounting	A Property	0	00	002		40	00	0.0		
GRF = Surface-Mount (Stub)	GRF342	12	390	2-4	1.2 : 1	30	30	0.4		
Temperature				4-6	1.4 : 1	25	25	0.8		
Storage: -65°C to +125°C										
Operating: -55°C to +85°C										

Schematics as viewed from terminals

6-8

1.6:1

GRF342

SCHEMATIC

Series RF180 Electromechanical Relays

The Series RF180 relay is a hermetically sealed, magnetic-latching relay featuring extremely low intercontact capacitance for exceptional RF performance over the full UHF spectrum. Its low profile height and .100" (2.54 mm) grid spaced terminals make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The GRF180 features a unique ground shield that isolates and shields each lead to ensure excellent contactto-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type		Nom	ninal Coil	Typical RF Performance					
DPDT Magnetic-Latching	Part No.	Voltage	Resistance	Frequency (GHz)	VSWR (max)	Isola	tion (dB)	Insertion Loss	
Coil Type		(Vdc)	(Ω)			Pole to Pole (min)	Across Contacts (min)	(dB) (max)	
180 = Standard Coil	A	5	61	DC-2	1.3 : 1	50	30	0.2	
Mounting			01	202				0.1	
RF = Thru-hole GRF = Surface-Mount (Stub)	RF18	1 2	500	2-4	1.3 : 1	45	30	0.3	
Temperature		26	2000	4-6	2.0 : 1	30	25	1.5	
Storage: -65°C to +125°C Operating: -55°C to +85°C	and the second	5	61	DC-2	1.2 : 1	50	35	0.2	
COIL B	GRF1	80 12	500	2-4	1.3 : 1	35	30	0.4	
	Po god	26	2000	4-6	2.0 : 1	25	30	1.5	
				V					

SCHEMATIC

Series RF341 Electromechanical Relays

COLLA

The RF341 series relay is an ultraminiature, hermetically sealed, magnetic-latching relay featuring extremely low intercontact capacitance for exceptional RF performance well into the C band. Its low profile and small size make it ideal for applications where extreme packaging density and/or close PC board spacing are required. Due to its minimal mass, many relays may be used to configure replacements for bulkier switching solutions at substantial savings in weight. The RF341 design has been optimized by increasing the distance between the set/reset contacts. This design improvement makes these unique relays the perfect choice for use in RF attenuators, RF switching matrices and other RF applications requiring high isolation, low insertion loss and low VSWR.

The GRF341 features a unique ground shield that isolates and shields each lead to ensure excellent contactto-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- · Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- · Through-hole or surface-mount configurations

Relay Type Nominal Coil Typical RF Performance solation Across SPDT Magnetic-Latching Part No. Voltage Resistance Frequency **Insertion Loss** VSWR Contacts (dB) (dB) (max) (Vdc) (GHz) **(**Ω**)** (max) **Coil Type** 341 = Standard Coil 5 0.5 61 DC-2 1.2:1 30 Mounting 12 500 2-4 1.2 : 1 25 0.8 **RF341** RF = Thru-hole 26 2000 4-6 1.4 : 1 20 2.0 GRF = Surface-Mount (Stub) **Temperature** 0.3

76

66 • 0

5 61 DC-2 1.2:1 35 12 500 2-4 1.3 : 1 30 **GRE341** 26 2000 4-6 1.4:1 25

SCHEMATIC

Schematics as viewed from terminals

(800) 284-7007 • www.teledynerelays.com • +44 (0) 1236 453124 • www.teledyne-europe.com

0.7

1.5

Series RF310/RF313 Electromechanical Relays

The ultraminiature RF310 and RF313 relays are designed with an internal bypass (through path), when the coil is de-energized, to provide low insertion loss and VSWR through the bypass and simplicity of design for the user. Relays have improved RF insertion loss repeatability over the frequency range from DC to 3 GHz. Highly suitable for use in attenuator, linear amplifier and other RF circuits.

- N.C. bypass configuration
- Repeatable insertion loss
- Broad Bandwidth

- Metal Enclosure for EMI shielding
- · Ground pin option to improve ground case RF grounding
- · High isolation between control and signal path

Relay Type		N	ominal Coil			Typical F	RF Perf	ormance		
Normally Closed Bypass	Part No.	Volta	no Posistanoo	Frequency	VSWR		Isolation (dB)		Insertion Loss (dB)	
Coil Type		(Vd		(GHz)	N.O.	Bypass	N.O.	Bypass	N.O.	Bypass
310 = Standard Coil					(max)	(max)	(min)	(min)	(max)	(max)
313 = Sensitive Coil	000	5	50	DC-1	1.2 : 1	1.3 : 1	35	25	0.2	0.3
Mounting	NF 31-									
RF = Thru-hole	R	F310 12	390	1-2	1.2 : 1	1.3 : 1	25	25	0.3	0.4
Temperature				2-3	1.4 : 1	1.3 : 1	25	20	0.4	0.5
Storage: -65°C to +125°C Operating: -55°C to +85°C		5	100	DC-1	1.2 : 1	1.3 : 1	35	25	0.2	0.3
	R	F313 12	850	1-2	1.2 : 1	1.3 : 1	25	25	0.3	0.4
⁹ ⁰ ¹ ² RF310				2-3	1.5 : 1	1.3 : 1	25	20	0.5	0.4
$\begin{pmatrix} 8 & \bigcirc & \bigcirc & 2 \\ 7 & \bigcirc & 1 \end{pmatrix} = \begin{pmatrix} RF310 \\ RF313 \end{pmatrix}$				0						

Series RF320/RF323 Electromechanical Relays

The ultraminiature RF320 and RF323 relays are designed with an internal bypass (through path), when the coil is energized, to provide low insertion loss and VSWR through the bypass and simplicity of design for the user. The RF320 and RF323 relays have improved RF insertion loss repeatability over the frequency range from DC to 3 GHz. Highly suitable for use in attenuator, linear amplifier and other RF circuits.

- N.O. bypass configuration
- Repeatable insertion loss
- Broad Bandwidth

- Metal Enclosure for EMI shielding
- Ground pin option to improve ground case RF grounding
- · High isolation between control and signal path

Relay Type		Nom	Nominal Coil		Typical RF Performance							
Normally Open Bypass	Part No.	Voltage	Resistance	Fraguancy	vs	WR	Isolation (dB)		Insertion Loss (dB)			
Coil Type		(Vdc)	(Ω)	(GHz)	N.C.	Bypass	N.C.	Bypass	N.C.	Bypass		
320 = Standard Coil					(max)	(max)	(min)	(min)	(max)	(max)		
323 = Sensitive Coil		5	50	DC-1	1.2 : 1	1.4 : 1	30	25	0.2	0.4		
Mounting	RF320											
RF = Thru-hole	RF320	12	390	1-2	1.2 : 1	1.4 : 1	30	20	0.3	0.4		
Temperature				2-3	1.4 : 1	1.4 : 1	25	20	0.4	0.6		
Storage: -65°C to +125°C Operating: -55°C to +85°C	AF X23	5	100	DC-1	1.2 : 1	1.4 : 1	30	25	0.2	0.4		
	RF323	12	850	1-2	1.2 : 1	1.4 : 1	30	20	0.3	0.4		
(⁹ ⊚ ⁹ ⊂ ¹) (⁸ ⊚ ⁹ ⊂ ¹) (⁸ ⊗ ¹ ⊂ ¹) (⁸ ⊗ ¹ ⊂ ¹) (⁸ ⊗ ¹) (⁸)				2-3	1.4 : 1	1.4 : 1	25	20	0.4	0.5		

Schematics as viewed from terminals

Series A150 Electromechanical Relays

The Series A150 ultraminiature Attenuator Relays are designed for attenuating RF signals in 50-ohm systems over a frequency range from DC to 3 GHz. Their low profile and small grid spacing makes them ideal for use when packaging density is a prime consideration. The A150 relays eliminate the need for additional external resistors.

These single section, switchable attenuator relays have internal matched thin film attenuator pads in "L," "T" or "Pi" configurations, as applicable. Relays are available in fixed increments of 1, 2, 3, 4, 5, 6, 8, 10, 16 and 20 dB, which can be used singly or in combination to achieve the attenuation levels desired.

- Excellent phase linearity
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
 Broader bandwidth
- Through-hole or surface-mount configurations

desired. The GA150 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

Relay Type		Nomir	nal Coil		Туріса	I RF Perfor	mance	
RF Attenuator	Part No.	Voltage	Resistance	Frequency	VSI	NR		on Loss IB)
Coil Type		(Vdc)	(Ω)	(GHz)	Attenuated	Thru Path	Тур.	Max.
A150 = Standard Coil					Path (Typ.)	(Max.)	ryp.	Max.
Mounting		5	50	DC-1	1.20 : 1	1.10 : 1	0.1	0.25
A = Thru-hole GA = Surface-Mount (Stub)	A150	12	390	1-2	1.30 : 1	1.20 : 1	0.2	0.35
Temperature	Allow	15	610	2-3	1.40 : 1	1.25 : 1	0.3	0.55
Storage: -65°C to +125°C Operating: -55°C to +85°C		26	1560					
3 <u>5</u> ●●		5	50	DC-1	1.20 : 1	1.20 : 1	0.1	0.25
	GA150	12	390	1-2	1.20 : 1	1.20 : 1	0.2	0.35
	CARDO	15	610	2-3	1.20 : 1	1.30 : 1	0.3	0.45
SCHEMATIC		26	1560					
(Bottom View)								

Series A152 Electromechanical Relays

The Series A152 highly repeatable ultraminiature attenuator relays are designed for attenuating RF signals in 50-ohm systems over a frequency range from DC to 5 GHz. Their low profile and small grid spacing makes them ideal for use when packaging density is a prime consideration. The A152 relays eliminate the need for additional external resistors/attenuators.

These single section, switchable attenuator relays have an internal matched thin film attenuator pad in a "Pi" configuration. Relays are available in a fixed increment of 20 dB. (Other values available) The GA152 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- · Through-hole or surface-mount
- configurations

Relay Type		Nomi	nal Coil		Туріса	al RF Perfor	mance	
RF Attenuator	Part No.	Voltage	Resistance	Frequency	VSV	WR	Insertion Loss (dB)	
Coil Type		(Vdc)	(Ω)	(GHz)	Attenuated Path (Typ.)	Thru Path (Max.)	Тур.	Max.
A152 = Standard Coil Mounting		5	50	DC-1	1.20 : 1	1.10 : 1	0.1	0.25
A = Thru-hole GA = Surface-Mount (Stub)	A152	12	390	1-2	1.30 : 1	1.20 : 1	0.2	0.35
Temperature	Aloz	15	610	2-3	1.40 : 1	1.25 : 1	0.3	0.55
Storage: -65°C to +125°C Operating: -55°C to +85°C		26	1560	3-5		See Da	tasheet	
3 5		5	50	DC-1	1.20 : 1	1.20 : 1	0.1	0.25
		12	390	1-2	1.20 : 1	1.20 : 1	0.2	0.35
	GA152	15	610	2-3	1.20 : 1	1.30 : 1	0.3	0.45
		26	1560	3-5	1.40 : 1	1.70 : 1	0.4	0.55

SCHEMATIC (Bottom View)

Page 10

All welded construction

and vibration

Unique uni-frame design providing high

magnetic efficiency and mechanical rigidity

· High force/mass ratio for resistance to shock

Precious metal alloy contact material with

gold plating assures excellent high current

and dry circuit switching capabilities

COMMERCIAL RELAYS

Series 122C Electromechanical Relays

The 122C Centigrid® magnetic-latching relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The basic operating function and internal structure are similar to Teledyne's TO-5, 422 relay series. The 122C is capable of meeting Teledyne Relays' T2R® requirements.

The Series 122C relay has internal silicon diodes for coil suppression, Zener diodes to protect the MOSFET gate inputs, and N-channel enhancement-mode MOSFET chips, which enable direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

The 122C magnetic-latching relay is ideally suited for applications where coil operating power must be minimized. The relays can be operated with a short-duration pulse. After the contacts have transferred, no external coil power is required.

The magnetic-latching feature of the Series 122C relay provides a "memory" capability, since the relays will not reset upon removal of coil power.

Relay Type Nominal Coil Coil Current DPDT Magnetic-Latching Latch and **Contact Load Rating** Part No. Voltage Operating (mA)Reset Voltage (Vdc) (Max) **CMOS Feature** (Vdc) Power (mW) Max Min. Internal power MOSFET 5 82.2 114.9 505 3.5 Resistive: 1A/28Vdc driver and diode coil 6 41.6 57.0 296 4.5 Inductive: 200mA/28Vdc (320mH) suppression 9 27.4 37.2 288 6.8 Lamp: 100mA/28Vdc Vibration Shock 122C 12 20.5 27.8 287 9.0 Low Level: 10 to 50 uA/10 to 50 mV 30 a's 100 g's 6 msec 18 13.7 18.2 286 13.5 half-sine to 3000 Hz 26 11.4 15.2 351 18.0 Acceleration 50 g's Temperature PIN 4: GATE A PIN 5: – SUPPLY PIN 9: GATE B PIN 10: + SUPPLY 122C Storage: -65°C to +125°C 0 3 Ъ Operating: -55°C to +85°C

SCHEMATIC

Series 172 Electromechanical Relays

The 172 Centigrid® relay is an ultraminiature, hermetically sealed, armature relay for commercial applications. Its low profile height .280" (7.11 mm) and .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, make it an ideal choice where extreme packaging density and/or close PC board spacing are required.

The Series 172 relay has an internal discrete silicon diode for coil transient suppression.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the 172 relay is an excellent subminiature RF switch for frequencies well into the UHF spectrum. Applications include telecommunications, test instruments, mobile communications, attenuators, and automatic test equipment.

- All welded construction
- Unique uni-frame design providing high
- magnetic efficiency and mechanical rigidity • High force/mass ratio for resistance to shock
- and vibration • Precious metal alloy contact material with
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	/ Туре				Nomii	nal Coil		
DPDT Non-Lat	tching	Part No.		voltage nesistance P		P.U.V (Vdc) (max.)	Operating Power (mW)	Contact Load Rating
Diode (Options			3	39	2.25	235	Besistive: 1A/28Vdc
D = Internal die		Hist	172	5	64	3.8	405	Inductive: 200mA/28Vdc (320mH)
transient supp	transient suppression		172D	12	400	9.0	360	Lamp: 100mA/28Vdc
Vibration	Shock			26	1600	18.0	440	Low Level: 10 to 50 uA/10 to 50 mV
10 g's to 500 Hz	30 g's 6 msec, half-sine							
Tempe	erature				5			\neg
Storage: -65°	°C to +125°C				9 2		7@ 0 0	1
Operating: -5	5°C to +85°C]] } 172]			

Schematics as viewed from terminals

COMMERCIAL RELAYS

Series 712 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the Series 712 relays are some of the most versatile ultraminiature relays available because of their small size and low coil power dissipation.

The Series 712D relay has an internal discrete silicon diode for coil transient suppression. The hybrid Series 712TN relay has an internal silicon diode and transistor driver. The integrated packaging of the relay with its associated semiconductor devices greatly reduces PC board floor space requirements as well as component installation costs

By virtue of its inherently low intercontact capacitance and contact circuit losses, the 712 has proven to be excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- · Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

A	DPDT
<u>.</u>	DIDI
н	
ш	D = In
	transi
M O	TN =
Ö	and c

Relay	Туре				Nom	inal Coil		
DPDT Non-Lat	ching	Part N	0.	Voltage	Resistance	P.U.V	Base Current to Turn On	Contact Load Rating
Diode C	Options			(Vdc)	(Ω)	(Vdc) (max.)	(712 TN only)	
D = Internal did	ode for coil	100		5	50	3.6	3.00	Resistive: 1A/28Vdc
transient suppi	ression	738	712	6	98	4.2	2.04	Inductive: 200mA/28Vdc (320mH)
TN = Internal ti	ransistor driver	stor driver		9	220	6.5	1.36	Lamp: 100mA/28Vdc
and coil transie	ent suppression		712D 712TN	12	390	8.4	1.03	Low Level: 10 to 50 uA/10 to 50 mV
diode			/121N	18	880	13.0	0.68	
Vibration	Shock	1111		26	1560	17.0	0.50	
	30 g's 6 msec,							
10 g's to 500 Hz	half-sine		八				1 3	43
Tempe	erature			02			↓	
Storage: -65°C to +125°C			(7◎→ •	<u>•</u> @3		70+4+403		
Operating: -55°C to +85°C						60-04		60 04
			712			712D		712TN

Series 722 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the 722 relay has become one of the most versatile ultraminiature relays available because of its small size and low coil power dissipation.

The Series 722D relay has discrete silicon diodes for coil transient suppression.

The Series 722 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse and after the contacts have transferred, no external coil power is required. The magnetic-latching feature of the Series 722 provides a "memory" capability, since the relays will not reset upon removal of coil power.

Schematics as viewed from terminals

All welded construction

A Last Energiz (Bottom View)

- Unique uni-frame design providing high magnetic efficiency and mechanical riaidity
- · High force/mass ratio for resistance to shock and vibration
- · Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities
- **Relay Type Nominal Coil** Part No. **Contact Load Rating** Voltage Resistance Set & Reset **DPDT Magnetic-Latching** (Vdc) **(**Ω**)** Voltage (Vdc) **Diode Options** 5 61 3.5 Resistive: 1A/28Vdc D = Internal diode for coil 6 120 Inductive: 200mA/28Vdc (320mH) 4.5 transient suppression 722 9 280 6.8 Lamp: 100mA/28Vdc Vibration Shock 722D 12 500 Low Level: 10 to 50 uA/10 to 50 mV 9.0 30 g's 6 msec, 1130 18 13.5 10 g's to 500 Hz half-sine 26 2000 18.0 Temperature COIL B COILE Storage: -65°C to +125°C Operating: -55°C to +85°C 722 722D COIL A COIL A SCHEMATIC SCHEMATIC (Coil A Last Energiz

COMMERCIAL RELAYS

Series 732 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the Series 732 relay is one of the most versatile ultraminiature relays available because of their small size and low coil power dissipation. The sensitive 732 relay has a high resistance coil, thus requiring extremely low operating power (200 mW typical). The advantages of reduced heat dissipation and power supply demands are a plus. The Series 732D relay has an internal discrete silicon diode for coil transient suppression. The hybrid Series 732TN relay has an internal silicon diode and transistor driver. The integrated packaging of the relay with its associated semiconductor devices greatly reduces PC board floor space requirements as well as component installation costs.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the 732 has proven to be excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil		
DPDT Non-Lat	ching Coil	Part N	0		Desistance		Base Current	Contact Load Rating
Diode C	Diode Options			Voltage (Vdc)	Resistance (Ω)	P.U.V (Vdc) (max.)	to Turn On	Contact Load Hating
D = Internal dic	ode for coil						(712 TN only)	
transient suppr	ression	080		5	100	3.5	1.50	Resistive: 1A/28Vdc
TN = Internal tr	ransistor driver	TO TALANTING	732	6	200	4.5	1.00	Inductive: 200mA/28Vdc (320mH)
and coil transie	and coil transient suppression		732D	9	400	6.8	0.75	Lamp: 100mA/28Vdc
diode			732TN	12	850	9.0	0.47	Low Level: 10 to 50 uA/10 to 50 mV
Vibration	Shock		75211	18	1600	13.5	0.38	
	30 g's 6 msec,	/////		26	3300	18.0	0.24	
10 g's to 500 Hz	half-sine							
Tempe	Temperature							
Storage: -65°C to +125°C								
Operating: -55°C to +85°C								

Schematics as viewed from terminals

COMMERCIAL SURFACE-MOUNT RELAYS

Series S114 & S134 Electromechanical Relays

The Series S114 Surface Mount Centigrid® Relay is an ultraminiature, hermetically sealed, armature relay. The low profile height .360" (9.14 mm) and .100" (2.54 mm) lead spacing make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The specially formed leads are pre-tinned to make the relays ideal for most types of surface mount solder reflow processes.

The basic design and internal construction are identical to the Series 114 & 134 Centigrid® relays, and are capable of meeting Teledyne Relays' T2R® requirements.

The S114D and S114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.

The sensitive S134 surface mount Centigrid® Relay has a high resistance coil, thus requiring extremely low operating power (200 mW typical). The advantages of reduced heat dissipation and power supply demands are a plus.

- All welded construction
- Unique uni-frame design providing
- high magnetic efficiency and mechanical rigidity

- · High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nor	ninal Coil			
DPDT Non-Lat	ching	Part N	ο.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil	Туре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
S114 = Standa	rd Coil			5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
S134 = Sensiti	ve Coil	121		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode (Options	1	S114 S114D	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal die	ode for coil	10. F		12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
transient supp	ression			18	880	13.5	0.59	10.0	
DD = Internal of	liode for coil			26	1560	18.0	0.89	13.0	
transient supp	ression and			5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
polarity reversal protection		1 to		6	78	5.0	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Vibration	Shock		S114DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
30 q's to 3000	75 g's 6 msec,	ALL TO		12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
Hz	half-sine			18	880	14.5	1.1	10.0	
Accele				26	1560	19.0	1.4	13.0	
				5	100	3.5	0.12	2.5	Resistive: 1A/28Vdc
) g's			6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Тетре	erature	S TE	S134	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
Storage: -65°	C to +125°C	And P	S134D	12	800	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
Operating: -5	5°C to +85°C	. 140		18	1600	13.5	0.59	10.0	
				26	3200	18.0	0.89	13.0	
				5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
				6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
			S134DD	9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
		And S		12	800	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 mV
		140		18	1600	14.5	1.1	9.0	
				26	3200	19.0	1.3	13.0	

S114D S134D

S114DD S134DD

COMMERCIAL SURFACE-MOUNT RELAYS

Series S172 Electromechanical Relays

The S172 surface mount Centigrid® relay is an ultraminiature, hermetically sealed, armature relay for commercial applications. Its low profile height .470" (11.94 mm) and .100" (2.54 mm) grid spaced terminals make it an ideal choice where extreme packaging density and/or close PC board spacing are required. The specially formed surface-mount leads are pre-tinned to make the relays ideal for all types of surface-mount solder reflow processes.

The basic design and internal structure are similar to Teledyne's DPDT 114 Centigrid® relay. (see page 16) The S172D relay has an internal discrete silicon diode for coil transient suppression.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	/ Туре				Nomin	al Coil		
DPDT Non-Lat	tching	Part N	lo.	Voltage	Resistance	P.U.V (Vdc) (max.)	Operating	Contact Load Rating
Diode (Options			(Vdc) 5	(Ω) 64	(Vdc) (max.) 3.8	Power (mW) 405	Resistive: 1A/28Vdc
D = Internal die			S172	12	400	9.0	403 360	Inductive: 200mA/28Vdc (320mH)
transient supp	ression	200	S172D	26	1600	18.0	440	Lamp: 100mA/28Vdc
Vibration	Shock							Low Level: 10 to 50 uA/10 to 50 mV
10 g's to 500 Hz	30 g's 6 msec, half-sine			(Q7 (Q) 10	ລ			
Tempe	erature			6 8	2			
Storage: -65°C to +125°C Operating: -55°C to +85°C					I ſ			
Operating: -5	5°C 10 +85°C			S172			S17	2D

Series S422 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board surface mounting, its small size and low coil power dissipation make the S422 relay one of the most versatile ultraminiature relays available.

The Series S422D and S422DD utilize discrete diodes for coil suppression and polarity reversal protection. The Series S422 magnetic-latching relays are ideally suited for applications where power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required.

The magnetic-latching feature of the Series S422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
 Procisus matal allow contact material with
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nominal C	oil	
DPDT Magneti	c-Latching	Part N	0.	Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating
Diode (Options			5	61	3.5	Resistive: 1A/28Vdc
D = Internal die	ode for coil			6	120	4.5	Inductive: 200mA/28Vdc (320mH)
transient supp	ression	254	S422	9	280	6.8	Lamp: 100mA/28Vdc
DD = Internal of	liode for coil	36	S422D	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV
transient supp	ression and	2775		18	1130	13.5	
polarity revers	al protection			26	2000	18.0	
Vibration	Shock			5	48	4.5	Resistive: 1A/28Vdc
10 s's to 500 Lis	30 g's 6 msec,				97	5.5	Inductive: 200mA/28Vdc (320mH)
10 g's to 500 Hz	half-sine	254	S422DD	9	280	7.8	Lamp: 100mA/28Vdc
Tempe	erature	36 S422		12	500	10.0	Low Level: 10 to 50 uA/10 to 50 mV
Storage: -65°	C to +125°C	->775		18	1130	14.5	
Operating: -5				26	2000	19.0	
Schematics as view	ed from terminals			S422	COIL B	96001 96001 960000 960000 960000 960000 9600000000	S422D
		SCHEN (Coil A Last E				SCHEMATIC vil A Last Energized)	SCHEMATIC (Coil A Last Energized)

Series ER114 Electromechanical Relays

The Series ER114 Centigrid® relay is an ultraminiature, hermetically sealed, armature relay. Its low profile height .275" (7 mm) and 100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The basic design and internal construction are similar to the standard Teledyne DPDT TO-5 relay (e.g., Series ER412).

The Series ER114D and ER114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the ER114 relay has proven to be an excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the ER114 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

All welded construction

 Unique uni-frame design providing high magnetic efficiency and mechanical rigidity · High force/mass ratio for resistance to shock and vibration

· Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Non	ninal Coil			
DPDT Non-Late	ching	Part N	lo.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode C	Options			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
D = Internal dic	de for coil			5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
transient suppr	ression	William		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal d	liode for coil	Rat	ER114	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
transient suppr	ession and		ER114D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
polarity reversa	al protection			18	880	13.5	0.59	10.0	
Vibration	Shock			26	1560	18.0	0.89	13.0	
30 q's	75 q's 6 msec,			5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	Statemer 1		6	78	5.0	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature	1.45 M	ER114DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
Addeleration	Operating &			12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	Storage:			18	880	14.5	1.1	10.0	
00 90	-65°C to +125°C			26	1560	19.0	1.4	13.0	

Series ER116C Electromechanical Relays

The ER116C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals. which preclude the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The Series ER116C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement mode MOSFET chip, which enables direct relay interfacing with most Microprocessor and IC logic families (CMOS, TTL and MOS).

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock
- and vibration

Relay	Туре				Nomina	l Coil		
DPDT Non-Lat	ching	Part No.	Voltage		urrent A)	Operating	P.U.V	Contact Load Rating
CMOS I	Feature		(Vdc)	Min.	Max.	Power (mW)	(Vdc) (max.)	
Internal power N driver, Zener dic tion, and diode of		116C	5 6 9	96.5 60.3	132.3 83.9	641 462 268	4.0 4.9 7.3	Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH)
Vibration	Shock	ER116C	9 12	33.1 24.9	47.1 36.1	368 369	7.3 9.8	Lamp: 100mA/28Vdc Low Level: 10 to 50 uA/10 to 50 mV
30 g's to 3000 Hz	75 g's 6 msec, half-sine		12 18 26	24.9 16.1 12.9	24.1 19.9	368 450	9.8 14.6 19.5	
Acceleration	Temperature							
50 g's	Operating & Storage: -65°C to +125°C	0 2)		γ			<u>⊚</u> 1	
							♀ ² ≠ ਭ ● 3 ↓	7 0 3 6 0 4 PIN 1:+ SUPPLY PIN 9:- SUPPLY PIN 10: GATE
		ER114		ER114D		ER11	4DD	ER116C

P.U.V = Pick-Up Voltage

Schematics as viewed from terminals

Series ER134 Electromechanical Relays

The ER134 sensitive Centigrid® relay retains the same features as the ER114 standard Centigrid® relay with only a minimal increase in profile height .375" (9.53 mm). Its .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, and its low profile make the ER134 relay ideal for applications where high packaging density is important.

The Series ER134D and ER134DD have internal discrete silicon diodes for coil suppression and polarity reversal protection.

The sensitive ER134 Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/magnetic for resistance to shool
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current
- and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil			
DPDT Non-Lat	ching	Part No.		Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode C	Options			(Vdc) (Ω) (Vo		(Vdc) (max.)	min.	max.	
D = Internal did	ode for coil			5	100	3.5	0.12	2.5	Resistive: 1A/28Vdc
transient suppr	ression	1 -11 - 14		6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal c	liode for coil	E	ER134	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
transient suppr	ression and	E	R134D	12	800	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
polarity reversa	al protection		18	1600	13.5	0.59	10.0		
Vibration	Shock			26	3200	18.0	0.89	13.0	
30 q's	75 q's 6 msec,			5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	A SULT		6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature		R134DD	9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
Acceleration	remperature		113400	12	800	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 mV
	Operating &	nnnn		18	1600	14.5	1.1	9.0	
50 g's	Storage:	սևՈՈս		26	3200	19.0	1.3	13.0	
	–65°C to +125°C								

Series ER136C Electromechanical Relays

The sensitive ER136C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The sensitive ER136C Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mW, typical). The advantages of reduced heat dissipation and power supply demands are a plus.

The sensitive Series ER136C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement-mode MOSFET chip that enables direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock

and vibration

Relay	Туре				Nomina	l Coil		
DPDT Non-Lat	ching	Part No.	Voltage		urrent	Operating	P.U.V	Contact Load Rating
CMOS F	Feature		(Vdc)	Min.	Max.	Power (mW)	(Vdc) (max.)	
Internal power M driver, Zener dic tion, and diode o			5 6	43.0 27.0	56.0 33.0	250 180	4.0 4.9	Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH)
Vibration	Shock	ER136C	9	17.8	26.4	203	7.3	Lamp: 100mA/28Vdc
30 g's to 3000 Hz	75 g's 6 msec, half-sine		12 18 26	11.3 8.4 5.8	17.7 13.8 10.2	180 203 219	9.8 14.6 19.5	Low Level: 10 to 50 uA/10 to 50 mV
Acceleration	Temperature			0.0		2.0		
50 g's	Operating & Storage: -65°C to +125°C							9 - 10 + 1 8 0 2 PIN 1: + SUPPLY 7 0 0 3 PIN 9: - SUPPLY
								6 0 PIN TO: GATE
		ER134		ER134D		ER13	4DD	ER136C

Schematics as viewed from terminals

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

Series ER411 & ER431 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the ER411 relay one of the most versatile ultraminiature relays available.

The Series ER411D and ER411DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER411T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

The sensitive ER431 relay has a high resistance coil, thus requiring extremely low operating power (150 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus. The Series ER431D and ER431DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER431T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by minimizing the number of external components needed to drive the relay.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nor	ninal Coil			
SPDT Non-Late	ching	Part I	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil 1	Гуре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
ER411 = Stand	ard Coil	and the second s		5	63	3.7	0.15	2.4	Resistive: 1A/28Vdc
ER431 = Sensi	tive Coil	3-7- 25		6	125	4.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
Diode C	options	and the second	ER411	9	280	6.8	0.35	4.2	Lamp: 100mA/28Vdc
D = Internal dio		L. H	ER411D	12	500	9.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
transient suppr		Then		18	1130	13.5	0.58	8.4	
	DD = Internal diode for coil			26	2000	18.0	0.89	10.4	
transient suppr		States		5	50	4.5	0.15	2.4	Resistive: 1A/28Vdc
polarity reversa		27783		6	98	5.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
T = Internal trai	•		ER411DD	9	280	7.8	0.35	4.2	Lamp: 100mA/28Vdc
and coil transie		C. A	EN411DD	12	500	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
diode		TEAL		18	1130	14.5	0.58	8.4	
Vibration	Shock			26	2000	19.0	0.89	10.4	
30 g's	75 g's 6 msec,	States		5	63	3.9	0.15	2.4	Resistive: 1A/28Vdc
to 3000 Hz	half-sine			6	125	5.2	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
			ER411T	9	280	7.8	0.35	4.2	Lamp: 100mA/28Vdc
Acceleration	Temperature	L. A	E114111	12	500	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
50 e'e	Operating & Storage:	TITLE		18	1130	14.5	0.58	8.4	
50 g's	-65°C to +125°C			26	2000	19.0	0.89	10.4	
	-03 0 10 +123 0			5	125	3.7	0.15	2.0	Resistive: 1A/28Vdc
		431		6	255	4.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
		06461	ER431	9	630	6.8	0.35	4.2	Lamp: 100mA/28Vdc
	ER411	03900	ER431D	12	1025	9.0	0.41	5.6	Low Level: 10 to 50 uA/10 to 50 mV
3 ⊙ ▶ ∎ ⊚ 2	ER431			18	2300	13.5	0.58	8.4	
				26	4000	18.0	0.89	10.4	
_		Contraction of the second		5	100	4.5	0.15	2.4	Resistive: 1A/28Vdc
+	_	431		6	200	5.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
	ER411D	06461	ER431DD	9	630	7.8	0.35	4.2	Lamp: 100mA/28Vdc
$\sqrt{3} \odot 4 \odot 2$	ER431D			12	1025	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
		\mathbf{M}		18	2300	14.5	0.58	8.4	
				26	4000	19.0	0.89	10.4	
	•	431 -5A 06461 83960		5	125	3.6	0.15	2.0	Resistive: 1A/28Vdc
$\begin{pmatrix} 4 \\ \odot \\ - \\ \odot \\ \odot \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	ER411DD			6	255	4.8	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
	ER431DD		ER431T	9	630	7.8	0.35	4.2	Lamp: 100mA/28Vdc
30 0 2	2/ ER431DD			12	1025	10.0	0.41	5.6	Low Level: 10 to 50 uA/10 to 50 mV
				18	2300	14.5	0.58	8.4	
				26	4000	19.0	0.89	10.4	

Schematics as viewed from terminals

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

Series ER412 & ER432 Electromechanical Relays

external components needed to drive the relay.

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the ER412 relay one of the most versatile ultraminiature relays available.

The Series ER412D and ER412DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER412T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

The sensitive ER432 relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus. The Series ER432D and ER432DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER432T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by minimizing the number of

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock
 and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil			
DPDT Non-Late	ching	Part I	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil 1	Гуре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
ER412 = Stand	ard Coil	a la contra de la		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
ER432 = Sensi	tive Coil	27,82		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode O	ptions		ER412	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal dio	de for coil	-	ER412D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 uA
transient suppr	ransient suppression DD = Internal diode for coil			18	880	13.5	0.59	10.0	
DD = Internal d				26	1560	18.0	0.89	13.0	
transient suppr	ession and	and at		5	39	3.9	0.6	2.8	Resistive: 1A/28Vdc
polarity reversa	al protection	1183		6	78	5.2	0.7	3.4	Inductive: 200mA/28Vdc (320mH
T = Internal trar	Internal transistor drive		ER412DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
and coil transie	nt suppression			12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 u/
diode		14441		18	880	14.5	1.1	10.0	
Vibration	Shock			26	1560	19.0	1.4	13.0	
30 g's	75 g's 6 msec,			5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
to 3000 Hz	half-sine			6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH
Acceleration	Temperature		ER412T	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
Addeleration	Operating &			12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 m
50 g's	Storage:			18	880	13.5	0.59	10.0	
00 9 5	-65°C to +125°C			26	1560	18.0	0.89	13.0	
		-5A		5	100	3.5	0.14	2.5	Resistive: 1A/28Vdc
八			43 54. ED400	6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH
20001		0305	ER432	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
	ER412 ER432		ER432D	12	850	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 m
	ER432			18	1600	13.5	0.59	10.0	
		11 # 1 11		26	3300	18.0	0.89	13.0	
				5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
		-54.		6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH
	ER412D	0305	ER432DD	9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
	ER432D			12	850	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 m
				18	1600	14.5	1.1	9.0	
•	7	11 . 1 11		26	3300	19.0	1.3	13.0	
	a	9		5	100	3.6	0.14	2.5	Resistive: 1A/28Vdc
	ER412DD	-5A		6	200	4.8	0.18	3.2	Inductive: 200mA/28Vdc (320mH
	ER432DD	5520	ER432T	9 12	400	7.8	0.35	4.9 6.5	Lamp: 100mA/28Vdc
			ER4321		850	11.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 m
			18	1600	14.5	0.59	10.0		
	ą	111111		26	3300	19.0	0.89	13.0	
	ER412T	Schematics as viewed from terminals							P.U.V = Pick-Up Voltag

∢(0)3

ER432T

7@+

(0<mark>-</mark>0)

© 2010 TELEDYNE RELAYS

D.O.V = Drop-Out Voltage

Series 255, 256, 257, 258 Electromechanical Relays

The Series 255 is an industry-standard, half-size, latching crystal can relay. It has a wide range of switching capabilities ranging from low level to 2 amps. The Series J255/255 latching relay configuration is double-pole double-throw (DPDT), so the relay offers excellent switching density and versatility. Half-Size Crystal Can Features:

- · Low level to 2 amps
- Wide range of switching capabilities
- Smallest relay package capable of switching 2 amps
- Modernized assembly process
- · Lead-free (gold-plated wire lead only)

- All welded construction
- · Wire leads, gold-plated or solder-coated
- · Matched seal for superior hermeticity
- · Gold-plated contact assembly
- Modernized assembly process
- · Advanced cleaning techniques

Relay Type			Nomi	nal Coil			
DPDT Magnetic-Latching	Part No.	Voltage	Resistance		set Voltage Vdc)	Contact Load Rating	
Vibration		(Vdc)	(Ω)	 Min.	Max.		
30G, 10-2500 Hz (Sinusoidal)	255	5	45	1.0	3.8	Resistive: 2A/28Vdc	
Shock	256	6 12	63 254	1.3 2.6	4.5 9.0	Inductive: 0.75A/28Vdc (320mH) Intermediate Current: 0.1A/28Vdc	
100G, 6 msec half-sine (Specified Pulse)	257	26 26	1000 1000	5.2 5.2	18.0 18.0	Lamp: 0.16A/28Vdc Low Level: 10 to 50 uA/10 to 50 mV	
Temperature	255		256	0.1	257	258	
Operating & Storage: -65°C to +125°C							
	SCHEMATIC (Coll X Last Energized) (Bottom View)	SCHEMATIC (Coll X Last Energized) (Rotrom View)			SCHEMATIC (Coll X Last Energized)	SCHEMATIC (Coil Y Last Energized)	

Series ER421 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the ER421 relay one of the most versatile ultraminiature relays available.

The Series ER421D and ER421DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

The Series ER421 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series ER421 provides a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to shock
- and vibration • Precious metal alloy contact material with
- gold plating assures excellent high current and dry circuit switching capabilities

	Relay	Туре				Nominal C	oil	
	SPDT Magneti	Ű	Part I	No.	Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating
	Diode C	options			5	61	3.5	Resistive: 1A/28Vdc
	D = Internal diode for coil		all's		6	120	4.5	Inductive: 200mA/28Vdc (320mH)
	transient suppr	ression	- 22		9	280	6.8	Itage (Vdc) Resistive: 1A/28Vdc 3.5 Resistive: 200mA/28Vdc (320mH)
	DD = Internal diode for coil		7 8	ER421	12	500	9.0	Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH) Lamp: 100mA/28Vdc Low Level: 10 to 50 uA/10 to 50 mV Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH) Lamp: 100mA/28Vdc Low Level: 10 to 50 uA/10 to 50 mV Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH) Lamp: 100mA/28Vdc
	transient suppr	ession and	791		18	1130	13.5	
	polarity reversa	al protection			26	2000	18.0	
	Vibration	Shock			5	61		Resistive: 1A/28Vdc
	30 g's	100 g's 6 msec,	WILL.	ER421D		120		
	to 3000 Hz	half-sine	- 22					· · · · · ·
	Acceleration	Temperature	7 8		12			·
	Acceleration	Operating &	291					
	50 g's	Storage:			26			
	00 g 0	-65°C to +125°C			-			Besistive: 14/28Vdc
l	*See Schematics on Page 21		WILL A			Add Other and the		
			20			•		. ,
*			212	ER421DD				·
			207					Low Level: 10 to 50 uA/10 to 50 mV
			400		18	1130	14.5	
					26	2000	19.0	

Series ER420 & ER422 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the ER420 & ER422 relays some of the most versatile ultraminiature relavs available.

The Series ER420D/ER422D and ER420DD/ER422DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

The Series ER420/ER422 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series ER420/ ER422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to shock and vibration
- · Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

ER422

FB422D

Series J114 Electromechanical Relays

The Series J114 Centigrid® relay is an ultraminiature, hermetically sealed, armature relay. Its low profile height .275" (7 mm) and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The basic design and internal construction are similar to the standard Teledyne DPDT TO-5 relay (e.g., Series J412)

The Series J114D and J114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the J114 relay has proven to be an excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the J114 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil			
DPDT Non-Lat	ching	Part	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode Options				(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
D = Internal dic	ode for coil			5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
transient suppr	ression	* TELETHE	J114	6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal d	liode for coil	Rat .	(M39016/17)	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
transient suppression and		J114D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV	
polarity reversa	al protection		(M39016/18)	18	880	13.5	0.59	10.0	
Vibration	Shock			26	1560	18.0	0.89	13.0	
30 q's	75 q's 6 msec,			5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	Willing .		6	78	5.0	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature	2.0	J114DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
Acceleration	Operating &	(M39016/	(M39016/18)	12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	Storage:			18	880	14.5	1.1	10.0	
0090	-65°C to +125°C			26	1560	19.0	1.4	13.0	

Series J116C Electromechanical Relays

The J116C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The Series J116C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement mode MOSFET chip, which enables direct relay interfacing with most Microprocessor and IC logic families (CMOS, TTL and MOS).

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock
- and vibration

Relay	Туре			N	ominal	Coil		
DPDT Non-Lat	ching	Part No.	Voltage	Coil Current (mA)		Operating	P.U.V	Contact Load Rating
CMOS I	Feature		(Vdc)	Min.	Max.	Power (mW)	(Vdc) (max.)	
Internal power M driver, Zener dio			5	96.5	132.3	641	4.0	Resistive: 1A/28Vdc
tion, and diode	U .	-5A	6	60.3	83.9	462	4.9	Inductive: 200mA/28Vdc (320mH)
Vibration	Shock	J116C	9	33.1	47.1	368	7.3	Lamp: 100mA/28Vdc
		(M28776/6)	12	24.9	36.1	369	9.8	Low Level: 10 to 50 uA/10 to 50 m
30 g's	75 g's 6 msec,		18	16.1	24.1	368	14.6	
to 3000 Hz	half-sine	1.1.0.0.0.1	26	12.9	19.9	450	19.5	
Acceleration	Temperature							
50 g's	Operating & Storage: -65°C to +125°C		}		2			9 10 11 1 8 0 2 7 0 3 7 0 0 3 PIN 9:- SUPPLY PIN 9:- SUP
U.V = Pick-Up Voltage O.V = Drop-Out Voltage		<u>⊚</u> 5 4 <u>3</u> <u>⊚</u> J114		5⊚@@ J114D	3	 +	14DD	J116C

Schematics as viewed from terminals

Series J134 Electromechanical Relays

The J134 sensitive Centigrid® relay retains the same features as the J114 standard Centigrid® relay with only a minimal increase in profile height .375" (9.53 mm). Its .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, and its low profile make the J134 relay ideal for applications where high packaging density is important.

The Series J134D and J134DD have internal discrete silicon diodes for coil suppression and polarity reversal protection.

The sensitive J134 Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil			
DPDT Non-Lat	ching	Part I	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode C	Diode Options			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
D = Internal did	ode for coil	227		5	100	3.5	0.12	2.5	Resistive: 1A/28Vdc
transient suppr	ression	Harris I	J134	6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal c	liode for coil	10 2 41 - 1944	(M39016/41)	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
transient suppression and			J134D	12	800	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
polarity reversa	al protection	INTRE	(M39016/42)	18	1600	13.5	0.59	10.0	
Vibration	Shock			26	3200	18.0	0.89	13.0	
30 g's	75 g's 6 msec,	a state		5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	the Low		6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature	Differ the	J134DD	9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
Acceleration			(M39016/43)	12	800	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	Operating & Storage:	MIN	18	1600	14.5	1.1	9.0		
3 -	-65°C to +125°C	III II IN I			3200	19.0	1.3	13.0	

Series J136C Electromechanical Relays

The sensitive J136C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The sensitive J136C Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mW, typical). The advantages of reduced heat dissipation and power supply demands are a plus.

The sensitive Series J136C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement-mode MOSFET chip that enables direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

- All welded construction
- Unique uni-frame design providing high
- magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nominal	Coil		
DPDT Non-Lat	ching	Part No.	Voltage		urrent	Operating	P.U.V	Contact Load Rating
CMOSI	Feature		(Vdc)	(m Min.	nA) Max.	Power (mW)	(Vdc) (max.)	
Internal power M driver, Zener dic tion, and diode o			5 6	43.0 27.0	56.0 33.0	250 180	4.0 4.9	Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH)
Vibration	Shock	J136C (M28776/7)	9	17.8	26.4	203	7.3	Lamp: 100mA/28Vdc
30 g's to 3000 Hz	75 g's 6 msec, half-sine		12 18 26	11.3 8.4 5.8	17.7 13.8 10.2	180 203 219	9.8 14.6 19.5	Low Level: 10 to 50 uA/10 to 50 mV
Acceleration	Temperature			0.0		2.0		
50 g's	Operating &		7 6 @	$ \bigcirc \bigcirc 1 $ $ \bigcirc 2 $	 ▼≋			9 - 10 + 1 8 0 - 0 2 PIN 1: + SUPPLY
Schematics as viewed from terminals		J134	5@				03	J136C

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

Series J411 & J431 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the J411 relay one of the most versatile ultraminiature relays available.

The Series J411D and J411DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J411T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

The sensitive J431 relay has a high resistance coil, thus requiring extremely low operating power (150 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus. The Series J431D and J431DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J431T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	ninal Coil			
SPDT Non-Late	ching	Part	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil	Гуре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
J411 = Standar	d Coil	and the second		5	63	3.7	0.15	2.4	Resistive: 1A/28Vdc
J431 = Sensitiv	/e Coil	277 82	J411	6	125	4.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
Diode C	Options	The second	(M39016/7)	9	280	6.8	0.35	4.2	Lamp: 100mA/28Vdc
D = Internal dic	ode for coil	C. A	J411D	12	500	9.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
transient suppression		1444	(M39016/23)	18	1130	13.5	0.58	8.4	
DD = Internal d	liode for coil			26	2000	18.0	0.89	10.4	
transient suppr	ession and	a line		5	50	4.5	0.15	2.4	Resistive: 1A/28Vdc
polarity reversa	polarity reversal protection T = Internal transistor drive and coil transient suppression				PLUY (Vdc) D.O.V (Vdc) min. max. 5 63 3.7 0.15 2.4 6 125 4.5 0.18 2.8 Induc 9 280 6.8 0.35 4.2 1000 1000 12 500 9.0 0.40 5.6 Low L 1000 18 1130 13.5 0.58 8.4 1000 10.4 5 50 4.5 0.15 2.4 1000 10.4 6 98 5.5 0.18 2.8 Induc 9 280 7.8 0.35 4.2 1000 18 1130 14.5 0.58 8.4 1000 1000 18 1130 14.5 0.58 8.4 1000 1000 10.4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 <td< td=""><td>Inductive: 200mA/28Vdc (320mH)</td></td<>	Inductive: 200mA/28Vdc (320mH)			
T = Internal tra			J411DD			Iterative min. max. 3.7 0.15 2.4 4.5 0.18 2.8 6.8 0.35 4.2 9.0 0.40 5.6 1.4 13.5 0.58 8.4 1.8.0 0.89 10.4 4.5 0.15 2.4 1.5 1.5 1.4 5.5 0.18 2.8 1.4 1.5 1.4 4.5 0.15 2.4 1.5 1.4 1.5 1.4 5.5 0.18 2.8 1.4 1.5 1.5 1.4 10.0 0.40 5.6 1.4 1.5 1.5 1.4 114.5 0.58 8.4 1.	Lamp: 100mA/28Vdc		
and coil transie			(M39016/24)	12	500	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
diode				18	1130	14.5	0.58	8.4	
Vibration	Shock	-111							
30 g's	75 g's 6 msec,	Ber de							Resistive: 1A/28Vdc
to 3000 Hz	half-sine	21000							Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature		J411T						Lamp: 100mA/28Vdc
Acceleration	remperature		(M28776/5)						Low Level: 10 to 50 uA/10 to 50 mV
	Operating &	(FEP)							
50 g's	Storage:	411.							
	-65°C to +125°C	- Land Carlo				3.7	0.15		Resistive: 1A/28Vdc
		431	J431			4.5			Inductive: 200mA/28Vdc (320mH)
		06461	(M39016/10)						Lamp: 100mA/28Vdc
			J431D			9.0			Low Level: 10 to 50 uA/10 to 50 mV
	J411 J431		(M39016/25)						
3 ◎ ► ► ◎ 2									
\bigcirc		and the second							Resistive: 1A/28Vdc
л		431							Inductive: 200mA/28Vdc (320mH)
		06461	J431DD						Lamp: 100mA/28Vdc
	J411D J431D		(M39016/26)						Low Level: 10 to 50 uA/10 to 50 mV
<u>3</u> ○→•○ ₂	J431D								
		- Later							Resistive: 1A/28Vdc
	2	431							Inductive: 200mA/28Vdc (320mH)
	J411DD	06461	J431T						Lamp: 100mA/28Vdc
3 ○ → • ○ 2	J431DD		(M28776/4)						Low Level: 10 to 50 uA/10 to 50 mV
		T							
				26	4000	19.0	0.89	10.4	

Schematics as viewed from terminals

MILITARY QUALIFIED (JAN)

Series J412 & J432 Electromechanical Relays

components needed to drive the relay.

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the J412 relay one of the most versatile ultraminiature relays available.

The Series J412D and J412DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J412T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

The sensitive J432 relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus. The Series J432D and J432DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J432T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- · Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	ninal Coil			
DPDT Non-Lat	ching	Part I	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil	Туре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
J412 = Standar	rd Coil	States a		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
J432 = Sensitiv	ve Coil	207182	J412	6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode C	Options	1112	(M39016/9)	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal dic	ode for coil		J412D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 uA
transient suppr	ression	1 P P P I	(M39016/15)	18	880	13.5	0.59	10.0	
DD = Internal d	liode for coil	211		26	1560	18.0	0.89	13.0	
transient suppr	ression and	a starter		5	39	3.9	0.6	2.8	Resistive: 1A/28Vdc
polarity reversa	al protection	2000		6	78	5.2	0.7	3.4	Inductive: 200mA/28Vdc (320mH
	= Internal transistor drive		J412DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
	ent suppression	5.2	(M39016/20)	12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 u
diode		1 PPPI		18	880	14.5	1.1	10.0	
Vibration	Shock			26	1560	19.0	1.4	13.0	
30 g's	75 g's 6 msec,	and the		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	- CARGO		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH
Acceleration	Temperature		J412T	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
Acceleration	Temperature		(M28776/1)	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 m
	Operating &	(h h h l		18	880	13.5	0.59	10.0	
50 g's	Storage:	-111		26	1560	18.0	0.89	13.0	
	-65°C to +125°C			5	100	3.5	0.14	2.5	Resistive: 1A/28Vdc
		-5Å	J432 (M39016/11)	6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH
		0305	(1100010/11)	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
³ ©	J412		J432D	12	850	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 m
	J432		(M39016/16)	18	1600	13.5	0.59	10.0	
		11 1 1 11		26	3300	18.0	0.89	13.0	
—				5 6	64 125	3.7	0.7 0.8	2.6 3.0	Resistive: 1A/28Vdc
		-5Å		6 9		4.8			Inductive: 200mA/28Vdc (320mH
	J412D	0 302 5520	J432DD (M39016/21)	9 12	400 850	8.0 11.0	0.9 1.0	4.5 5.8	Lamp: 100mA/28Vdc Low Level: 10 to 50 uA/10 to 50 m
	J432D		(12	1600	14.5	1.0	5.0 9.0	Low Level. 10 to 50 uA/10 to 50 m
				26	3300	14.5	1.1	9.0 13.0	
•	7			20 5	100	3.6	0.14	2.5	Resistive: 1A/28Vdc
	a l			6	200	3.0 4.8	0.14	3.2	Inductive: 200mA/28Vdc (320mH
	J412DD	-5A	14007	9	400	7.8	0.10	4.9	Lamp: 100mA/28Vdc
, ⊙ → → → <u></u> ⊙3/	J432DD	5520	J432T (M28776/3)	12	400 850	11.0	0.33	4.5 6.5	Low Level: 10 to 50 uA/10 to 50 m
60-04	040200	(1	(M28776/3)	18	1600	14.5	0.59	10.0	
	1/12T	Schematic	s as viewed fi	26 rom termina	3300	19.0	0.89	13.0	P.U.V = Pick-Up Vc

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

<u>_</u>02

€@3

Series J255 Electromechanical Relays

The Series J255 is an industry-standard, half-size, latching crystal can relay. It has a wide range of switching capabilities ranging from low level to 2 amps. The Series J255 latching relay configuration is double-pole double-throw (DPDT), so the relay offers excellent switching density and versatility. Half-Size Crystal Can Features:

- · Low level to 2 amps
- · Wide range of switching capabilities
- · Smallest relay package capable of switching 2 amps
- · Modernized assembly process
- Qualified to MIL-PRF39016/45
- · Lead-free (gold-plated wire lead only)

- All welded construction
- · Wire leads, gold-plated or solder-coated
- · Matched seal for superior hermeticity
- · Gold-plated contact assembly
- Modernized assembly process
- Advanced cleaning techniques

Relay Type			Nomir	nal Coil		
DPDT Magnetic-Latching	Part No.	Voltage			et Voltage	Contact Load Rating
Vibration		(Vdc)		(Vdc)		
30G, 10-2500 Hz				Min.	Max.	
(Sinusoidal)		5	45	1.0	3.8	Resistive: 2A/28Vdc
· · · · ·	A STATE	6	63	1.3	4.5	Inductive: 0.75A/28Vdc (320mH)
Shock	J255 (M39016/45)	12	254	2.6	9.0	Intermediate Current: 0.1A/28Vdc
100G, 6 msec half-sine	(\$39016/45)	26	1000	5.2	18.0	Lamp: 0.16A/28Vdc
(Specified Pulse)						Low Level: 10 to 50 uA/10 to 50 mV
Temperature	J255					
Operating & Storage:	J255	、 、				
-65°C to +125°C						

Series J421 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the J421 relay one of the most versatile ultraminiature relays available.

SCHEMATIC

The Series J421D and J421DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

The Series J421 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series J421 provides a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- · Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- · Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nominal C	oil	
SPDT Magneti	c-Latching	Part	Part No.		Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating
Diode (Options			(Vdc) 5	61	3.5	Resistive: 1A/28Vdc
D = Internal diode for coil transient suppression		aller.		6	120	4.5	Inductive: 200mA/28Vdc (320mH)
		. 22	J421	9	280	6.8	Lamp: 100mA/28Vdc
DD = Internal o	diode for coil	1.16	(M39016/8)	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 m
transient supp	sient suppression and			18	1130	13.5	
polarity reversal protection				26	2000	18.0	
Vibration	Shock			5	61	3.7	Resistive: 1A/28Vdc
30 g's	100 g's 6 msec,	all a	λ.	6	120	4.5	Inductive: 200mA/28Vdc (320mH)
to 3000 Hz	half-sine	0170	J421D	9	280	6.8	Lamp: 100mA/28Vdc
Acceleration	Temperature	0.1	(M39016/27)	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 m
	Operating &			18	1130	13.5	
50 g's	Storage:			26	2000	18.0	
	-65°C to +125°C			5	48	4.5	Resistive: 1A/28Vdc
ee Schematics on Page 27			6	6	97	5.5	Inductive: 200mA/28Vdc (320mH)
		2170	J421DD	9	280	7.8	Lamp: 100mA/28Vdc
		(M39016/28)		12	500	10.0	Low Level: 10 to 50 uA/10 to 50 mV

1130

2000

14.5

19.0

18

26

Series J420 & J422 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the J420 & J422 relays some of the most versatile ultraminiature relays available.

The Series J420D/J422D and J420DD/J422DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

The Series J420/J422 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series J420/J422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

HIGH-PERFORMANCE RELAYS

Series 412H, 422H & 432H Electromechanical Relays - High Temperature

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, these TO-5 relays are some of the most versatile ultraminiature relays available because of their small size and low coil power dissipation.

The H Series high-temperature TO-5 relays are designed for reliable operation in elevated ambient temperatures up to 200°C. Special material selection and processing provide assurance of freedom from contact contamination and mechanical malfunctioning that might otherwise be caused by ultra high ambient temperature conditions.

Typical applications:

Oil exploration (down-hole) instrumentation

· High-Temperature industrial and process control instrumentation

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	Part No.			Nom	inal Coil			
412H = DPDT Non-Latching			Voltage (Vdc)	Resistance (Ω)	P.U.V (Vdc) (max.)	D.O.V (Vdc)		Contact Load Rating
432H = DPDT Non-Latching						min.	max.	
422H = DPDT Magnetic-	4128-71 989-71 36286	412H	5	50	4.7	0.14	2.4	Resistive: 1A/28Vdc
Latching			6	98	5.9	0.18	3.4	Inductive: 200mA/28Vdc (320mH)
Coil Type			9	220	9.0	0.35	5.1	Lamp: 100mA/28Vdc
412H = Standard Coil			12	390	11.9	0.41	6.8	Low Level: 10 to 50 uA/10 to 50 mV
422H = Standard Coil			18	880	17.8	0.59	10.2	
432H = Sensitive Coil			26	1560	24.0	0.89	13.5	
Vibration	4324	432H	5	100	4.7	0.14	2.4	Resistive: 1A/28Vdc
30 g's to 3000 Hz			6	200	5.9	0.18	3.4	Inductive: 200mA/28Vdc (320mH)
Shock	26.04		9	400	9.0	0.35	5.1	Lamp: 100mA/28Vdc
412H = 75 g's 6 msec, half-sine	M		12	850	11.9	0.41	6.8	Low Level: 10 to 50 uA/10 to 50 mV
e .			18	1600	17.8	0.59	10.2	
432H = 75 g's 6 msec, half-sine 422H = 100 g's			26	3300	24.0	0.89	13.5	
Acceleration				Nominal (N - 11			

Acceleration			Nominal C	oil			
50 g's	Part No.	Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating		
Temperature		5	61	4.7	Resistive: 1A/28Vdc		
Operating & Storage:	4204-5						
-65°C to +200°C	08091	6	120	5.9	Inductive: 200mA/28Vdc (320mH)		
-65°C 10 +200°C	34320	9	280	9.0	Lamp: 100mA/28Vdc		
	422H	12	500	11.9	Low Level: 10 to 50 uA/10 to 50 mV		
		18	1130	17.8			
		26	2000	24.0			

Schematics as viewed from terminals

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

412H 432H

422H

HIGH-PERFORMANCE RELAYS

Series 412K & 422K Electromechanical Relays - High Shock

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the TO-5 relay one of the most versatile subminiature relays available.

The K Series high-shock TO-5 relays are designed to withstand shock levels up to 4000 g's, .5 msec duration. Special material selection and construction details provide assurance that critical elements of the relay structure and mechanism will not be permanently displaced or damaged as a result of extremely high g level shocks.

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to shock
- and vibration · Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Typical applications:

- · Commercial avionics aircraft control
- · Commercial aircraft control systems
- Transportation systems (rail/truck)

planes, half-sine Acceleration 50 g's Temperature Operating & Storage:

-65°C to +125°C

Relay Type			Nom	inal Coil			
412K = DPDT Non-Latching	Part No.	Voltage	Resistance (Ω)	P.U.V (Vdc) (max.)	D.O.V (Vdc)		Contact Load Rating
422K = DPDT Magnetic-		(Vdc)			min.	max.	
Latching		5	50	4.3	0.14	2.5	Resistive: 1A/28Vdc
Vibration	412K	6	80	5.2	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
30 g's to 3000 Hz		9	160	7.6	0.35	4.9	Lamp: 100mA/28Vdc
Shock		12	300	10.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
412K = 75 g's 6 msec, half-sine		18	600	14.3	0.59	10.0	
4000 g's, 0.5 msec axial		26	1350	21.0	0.89	13.0	
plane, half-sine							
1000 g's, 0.5 msec side			Nominal C	oil			
planes, half-sine	Part No.	Voltage	Resistance	Set & Reset		Contact Load Rating	
· ,		(Vdc)	(Ω)	Voltage (V	/dc)		
422K = 100 g's 6 msec, half-sine	CONTRACT OF	5	61	3.5		Resistive: 1A/28Vdc	
2100 g's, 0.5 msec axial	\$2K-35	6	120	4 5		Inc	ductive: 200mA/28Vdc (320mH)

planes, half-sine	Part No.	Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating
= 100 g's 6 msec, half-sine	CONTRACT OF	5	61	3.5	Resistive: 1A/28Vdc
2100 g's, 0.5 msec axial plane, half-sine	171 171 171	6	120	4.5	Inductive: 200mA/28Vdc (320mH)
750 q's, 0.5 msec side	422K	9	280	6.8	Lamp: 100mA/28Vdc
planes, half-sine	422R	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV
Acceleration		18	1130	13.5	
		26	2000	18.0	

412K

422K

Schematics as viewed from terminals P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

HIGH-PERFORMANCE RELAYS

Series 412V & 432V Electromechanical Relays - High Vibration

The 412V and 432V TO-5 relays, originally conceived and developed by Teledyne, have become the industry standards for low level switching from dry circuit to 1 ampere in high-vibration environments. Designed for high-density PC board mounting, these TO-5 relays are some of the most versatile ultraminiature relay available because of their small size and low coil power dissipation.

The V Series high-vibration relays are designed to withstand vibration levels of 250 to 380 g's at the frequencies noted, when tested on a resonant beam for 10 to 20 seconds, in the axis parallel to contact motion (x-axis), or 100 g's 10-2000 Hz for 20 minutes in the x-axis. A unique magnetic circuit prevents contact opening (chatter) in excess of 10 microseconds under vibration or shock conditions. Typical applications:

- Avionics aircraft control
- Aircraft control systems
- Transportation systems (rail/truck)

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock
 and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	Part No.			Nom	inal Coil			
DPDT Non-Latching			Voltage (Vdc)	Resistance (Ω)	P.U.V (Vdc) (max.)	D.O.V (Vdc)		Contact Load Rating
Coil Type						min.	max.	
412V = Standard Coil	01.20		5	50	4.6	0.14	2.3	Resistive: 1A/28Vdc
432V = Sensitive Coil	STORE A	412V 412DV	6	70	5.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode Options	20540		9	155	8.2	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal diode for coil			12	235	11.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
transient suppression			18	610	16.5	0.59	10.0	
DD = Internal diode for coil			26	1130	22.0	0.89	13.0	
transient suppression and	ANA DA		5	33	4.6	0.6	2.8	Resistive: 1A/28Vdc
polarity reversal protection	07081		6	44	5.5	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Vibration	4	12DDV	9	125	8.2	0.8	5.3	Lamp: 100mA/28Vdc
250 g's at 140 ±5 Hz			12	215	11.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
350 g's at 170 ±5 Hz			18	470	16.5	1.1	10.0	
380 g's at 200 ±5 Hz	10.00		26	1050	22.0	1.4	13.0	
Shock	ANPOL		5	80	4.6	0.14	2.5	Resistive: 1A/28Vdc
150 g's 11 msec, half-sine	03201	4001/	6	120	5.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
-		432V	9	240	8.2	0.35	4.9	Lamp: 100mA/28Vdc
Acceleration		432DV	12	480	11.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	////		18	950	16.5	0.59	10.0	
Temperature			26	1900	22.0	0.89	13.0	
Operating & Storage								

Operating & Storage: -65°C to +125°C

412V 432V

Schematics as viewed from terminals P.U.V = Pick-Up Voltage

D.O.V = Drop-Out Voltage

SERIES RF100

SERIES GRF100

Normally Open

SERIES SGRF100

Normally Open +130 mV 0 V -130 mV 40 ps 80 ps 120 ps 160 ps

SNR

18.20

Jitter_{P-P}

8.44 ps

Eye Width

87.64 ps

0 ps

Eye Height

261.2 mV

SERIES GRF172

SERIES RF300/RF303

SERIES GRF300/GRF303

Normally Open

SERIES SGRF300/SGRF303

SERIES SRF300/SRF303

Normally Open

SERIES RF312

Normally Open + 130 mV 0 V - 130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{p.p}

19.13

8.00 ps

264.3 mV

89.07 ps

SERIES GRF312

SERIES SGRF312

Normally Closed

Normally Open

SERIES RF311/RF331

Normally Closed

Normally Open

SERIES GRF311

SERIES GRF342

Normally Open

SERIES RF180

Normally Open

SERIES RF341

SERIES GRF341

Normally Closed -130 mV 1 Ope 1 Open 0 V -130 mV 0 Open 0 Open 0 ps 40 ps 80 ps 120 ps 160 ps Eye Width Eye Height SNR Jitter_{P-P} 256.2 mV 87.70 ps 17.15 8.89 ps

+13 0 V

Normally Open

SERIES RF310/RF313

-130 mV

SERIES RF320/RF323

SERIES A150

Thru Path

SERIES GA150

Thru Path +130 mV 0 V L D-0 RD-D -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 130.3 mV 78.38 ps 5.30 19.56 ps

SERIES A152

SERIES GA152

Attenuated Path

PATTERN GENERATOR SETTINGS

10 Gbps Random Pulse Pattern Generator 2³¹ - 1 PRBS signal PRBS output of 300mV_{P.P} (nominal) RF PCB effect (negligible) not removed from measurement Data shown is typical of both poles

RoHS and REACH CERTIFICATE OF COMPLIANCE

<u>RoHS</u>

It is hereby stated and certified that Teledyne Relays complies with the Restrictions on Hazardous Substances (RoHS) Directives to the extent herein:

Teledyne Relays does <u>not</u> use any of the Restricted Substances specified by the RoHS Directives (listed below) as components in TO-5 and Centigrid[®] Electromechanical Relay products, nor are these substances employed during any electromechanical relay manufacturing process:

Lead Mercury Cadmium Hexavalent Chromium Polybrominated Biphenyls (PBB's) Polybrominated Diphenyl Ethers (PBDE's)

However, upon request from the Customer, relay leads may be coated with <u>solder</u>, which contains 60% tin and 40% lead.

REACH

It is hereby stated and certified that Teledyne Relays complies with the Registration Evaluation Authorization and Restriction of Chemicals (REACH) Directives to the extent stated herein:

Teledyne Relays is a manufacturer of articles. Teledyne Relays has taken the initiative to review the (39) substances that are under consideration for treatment as Substances of Very High Concern (SVHC) candidates. Teledyne Relays confirmed that our relays do not contain any of the listed substances in concentration >0.1% weight per supplied article, substance or preparation weight.

A Teledyne Technologies Company

For Additional Information please E-Mail us at: relays@teledyne.com

APPENDIX: TELEDYNE RELAYS PART NUMBERING SYSTEM

General Note: Parts ordered without suffix may be supplied with Solder-Coated or Gold-Plated leads

- ¹ Parts ordered with Solder-Coated leads will have (Sn60/Pb40)
- ² Parts ordered with RoHS Solder-Coated leads will have (Sn99.3/Cu0.7)

³ Not Applicable to GRF relays

APPENDIX: TELEDYNE RELAYS PART NUMBERING SYSTEM

General Note: Parts ordered without suffix may be supplied with Solder-Coated or Gold-Plated leads. 1 Parts ordered with Solder-Coated leads will have (Sn60/Pb40) 2 Parts ordered with RoHS Solder-Coated leads will have (Sn99.3/Cu0.7)

If you don't see what you're looking for in this Selection Guide, contact us!

APPENDIX: Spacer Pads

Pad designation and pottom view dimensions	Height	For use with the following:	Dim. H Max.	
a 150		ER412, ER412D, ER412DD	.295 (7.49)	
Ø.150 → [3.81] → (REF)		712, 712D, 712TN, RF300, RF310, RF320	.300 (7.62)	
		ER420, ER422D, ER420DD, 421, ER421D, ER421DD, ER422, ER422D, ER422DD, 722, 722D, RF341	.305 (7.75)	
		ER431T, ER432T, ER432, ER432D, ER432DD	.400 (10.16)	
		732, 732D, 732TN, RF303, RF313, RF323	.410 (10.41)	
"M4" Pad for TO-5		RF312	.350 (8.89)	
_	Ţ	ER411, ER411D, ER411DD, ER411T	.295 (7.49)	
	Dim H MAX	ER431, ER431D, ER431DD	.400 (10.16)	
		RF311	.300 (7.62)	
"M4" Pad for TO-5		RF331	.410 (10.41)	
	0	172, 172D	.305 (7.75)	
		ER114, ER114D, ER114DD, J114, J114D, J114DD	.300 (7.62)	
		ER134, ER134D, ER134DD, J134, J134D, J134DD	.400 (10.16)	
		RF100	.315 (8.00)	
"M4" Pad for Centigrid [®]		RF103	.420 (10.67)	
.156 (3.96) (REF) (REF) (REF) (REF) (REF) (REF) (REF) (REF) (REF) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0		122C, A152	.320 (8.13)	
	Dim H	ER116C, J116C	.300 (7.62)	
		ER136C, J136C	.400 (10.16)	
		RF180	.325 (8.25)	
"M9" Pad for Centigrid [®]		A150	.305 (7.75)	

1. Spacer pad material: Polyester film.

2. To specify an "M4" or "M9" spacer pad, refer to the mounting variants portion of the part numbering

example in the applicable datasheet.

3. Dimensions are in inches (mm).

4. Unless otherwise specified, tolerance is \pm .010" (.25 mm).

5. Add 10 m Ω to the contact resistance shown in the datasheet.

6. Add 0.01 oz. (0.25 g) to the weight of the relay assembly shown in the datasheet.

APPENDIX: Spreader Pads

Pad designation and bottom view dimensions	Height	For use with the following:	Dim. H Max.	
$\begin{array}{c} & & 370 [9.4] \\ & & MAX SQ \\ & & & 100 \\ 1.50 \\ & & & & & \\ 300 \\ \hline & & & & & \\ 300 \\ \hline & & & & & \\ 300 \\ \hline & & & & & \\ 300 \\ \hline & & & & & \\ \hline & & & & & \\ 300 \\ \hline & & & & & \\ 300 \\ \hline & & & & & \\ \hline & & & & \\ 300 \\ \hline & & & & & \\ \hline & & & & \\ 300 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ 300 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	<u>†</u>	ER411T, J411T, ER412, ER412D ER412DD, J412, J412D, J412DD ER412T, J412T	.388 (9.86)	
	Dim H MAX .014 [0.36] (REF) .370 [9.4] MIN	712, 712D, 712TN	.393 (9.99)	
		ER431T, J431T, ER432, ER432D ER432DD, J432, J432D, J432DD ER432T, J432T	.493 (12.52)	
		732, 732D, 732TN	.503 (12.78)	
		ER420, J420, ER420D, J420D ER420DD, J420DD, ER421, J421 ER421D, J421D, ER421DD J422D, ER422DD, J422DD, 722	.398 (10.11)	
$\begin{array}{c} & 390 \begin{bmatrix} 9.91 \\ SQ \\ 12.54 \end{bmatrix} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	1	ER411T ER412, ER412D, ER412DD J412, J412D, J412DD	.441 (11.20)	
		712, 712D	.451 (11.46)	
		ER421, ER421D, ER421DD 722, 732D	.451 (11.46)	
	130 [3.3]	ER431T ER432, ER432D, ER432DD	.546 (13.87)	
"M2" Pad <u>7</u> / <u>8</u> /		732, 732D	.556 (14.12)	
		ER411, ER411D, ER411DD, ER411TX ER412X, ER412DX, ER412DDX ER412TX	.388 (9.86)	
		712X, 712DX, 712TNX	.393 (9.99)	
	Dim H MAX .014 [0.36] (REF)	ER420X, ER420DX, ER420DDX ER421X, ER421DX, ER421DDX ER422X, ER422DX ER422DDX, 722X, 722DDX	.398 (10.11)	
	.370 [9.4] MIN	ER431, ER431D, ER431DD ER431TX ER432X, ER432DX, ER432DDX ER432TX	.493 (12.52)	
"M3" Pad <u>5</u> / <u>6</u> / <u>9</u> /	······································	732X, 732DX, 732TNX	.503 (12.78)	

Notes:

- 1. Spreader pad material: Diallyl Phthalate.
- 2. To specify an "M", "M2" or "M3" spreader pad, refer to the mounting variants portion of the part number example in the applicable datasheet.
- 3. Dimensions are in inches (mm).
- 4. Unless otherwise specified, tolerance is \pm .010" (0.25 mm).
- $\underline{5}/.$ Add 25 m Ω to the contact resistance shown in the datasheet.
- 6/. Add .01 oz. (0.25 g) to the weight of the relay assembly shown in the datasheet.
- $\underline{7}/.$ Add 50 m Ω to the contact resistance shown in the datasheet.
- 8/. Add 0.025 oz (0.71 g) to the weight of the relay assembly shown in the datasheet.
- 9/. M3 pad to be used only when the relay has a center pin (e.g. ER411M3-12A, 722XM3-26.)

APPENDIX: Ground Pin Positions

Ø.200 Ø.200 Ø5.08] 45°±3° "Y" POSITION

TO-5 Relays:

ER411T, ER412, ER412T, ER420, ER421, ER422, ER431T, ER432, ER432T, 712, 712TN, 400H, 400K, 400V, RF300, RF303, RF341, RF312, RF310, RF313, RF320, RF323

Centigrid® Relays: RF180, ER116C, 122C, ER136C

O Indicates ground pin position

Indicates glass insulated lead position

Indicates ground pin or lead position depending on relay type

NOTES

- 1. Terminal views shown
- 2. Dimensions are in inches (mm)
- 3. Tolerances: \pm .010 (\pm .25) unless otherwise specified
- 4. Ground pin positions are within .015 (0.38) dia. of true position
- 5. Ground pin head dia., 0.035 (0.89) ref: height 0.010 (0.25) ref.
- 6. Lead dia. 0.017 (0.43) nom.

APPENDIX: Teledyne Relays T²R Program

Teledyne Relays' *Till* program was developed to provide the JAN relay user an alternate means of specifying and procuring established reliability relays. The form, fit and function of a *Till* relay is the same as that of its JAN counterpart. *Till* program requirements differ in certain regimens/tests found in both MIL-PRF-28776 and MIL-PRF-39016 that add cost but no value to the relay.

This program parallels the military specifications in most aspects. The components that make up such a program are intricate and varied. Furthermore, there are additional options of high value for design, manufacturability and operation of high reliability assemblies. The following page presents a table that compares the 100% screening performed on JAN relays and *Till* relays prior to shipment.

Other significant highlights of the The program include:

- Two unique screening levels
- · The ability to define lead finish
- · Spacer pad options which may not be available in military specifications
- Ground pin options which may not be available in military specifications
- Reduced lead time
- Reduced cost

The program is fully defined for both general product requirements and detailed product requirements in the following Teledyne Relays specifications:

TR-R-1 TR-STD-1 TR-STD-2 TR-ERL-1 TR-R-1/XXX TR Supplement

Copies of these documents are available from Teledyne Relays. We suggest that users check with Teledyne Relays from time to time to assure that they have the latest issue.

Can't Find What You Need?

Check out our full line of relays and switches. Order literature online at http://www.teledynerelays.com/lit-request.asp

APPENDIX: Teledyne Relays T²R Program

	Screening Levels				
INSPECTION	TR A Level 1.5%/10K Cycles	TR B Level .75%/10K Cycles	JAN L Level 3%/10K Cycles	JAN M Level 1%/10K Cycles	
Subgroup 1	·			·	
Screening, Internal Moisture AQL ¹	v	v	v	~	
Vibration (Sinusoidal) AQL ¹			v		
Vibration (Sinusoidal) 100%		v		~	
Screening, Burn-In (Hybrids only)			v	~	
Screening, Run-In (Room Temperature)	v				
Screening, Run-In (+125°C and –65°C)		v	~	~	
Subgroup 2	-				
Coil Resistance or Coil Current	v	v	~	~	
Insulation Resistance	~	<i>v</i>	~	~	
Dielectric Withstanding Voltage	~	<u>ر</u>	~	~	
Static Contact Resistance	~	v .6	v	~	
Pickup and Dropout or Set and Reset Voltage	~	r	~	~	
Operate and Release or Set and Reset Time	v	Sv	v	~	
Hold Voltage			v	~	
Turn-On and Turn-Off Time (Hybrids only)	V ()	v	v	~	
Contact Bounce Time	~		v		
Contact Stabilization Time		v		~	
Turn-On Current (T Hybrids only)	~ ~	v	v	~	
Turn-On Voltage (C Hybrids only)	V V	v	v	~	
Turn-Off Voltage (Hybrids only)	V	v	v	~	
Coil Transient Suppression (D, DD and Hybrids only)	~	v	~	~	
Diode Blocking Integrity (DD only)	v	v	v	~	
Zener Voltage (C Hybrid only)	v	v	v	~	
Neutral Screen (Latching Relays only)	v	~	v	~	
Break Before Make Verification			V	~	
Contact Simultaneity			V	~	
Subgroup 3	,				
Solderability 2 Samples per Daily Solderability Inspection Lot	~	v	V	V	
Leak Test	 ✓ 	~	v	~	
External Visual and Mechanical Inspection 2/Lot for Dimension and Weight Check	~	~	~	~	

1 AQL = Acceptable Quality Level

Teledyne Relays HI-REL Program

Teledyne Relays: Because in deep space there is no acceptable failure rate

Teledyne Relays has a long history of supplying High Reliability relays for use in space bound vehicles. From the earliest deep space probes, such as

Voyager I, now nearing 21 billion miles out in space, to the next generation of probes scheduled for the

future , Teledyne Relays continues to be the preeminent supplier of Hi-Reliability relays to the space market.

Teledyne Relays Hi-Reliability Specification: TR-HIREL-1

- Eliminates the need for customers to develop and maintain specifications.
- Manufacturing and Quality Assurance requirements are fully defined and documented.
- Meets the general requirements of both ESA/SCC and NASA/GSFC documents.
- Offers options for 100% Group A screening
- Offers options for 3 levels of Lot Acceptance Testing (LAT).

Teledyne Screening Document 0-40-837

NASA approved screening regimen based on NASA/GSFC S-311-P.754

RELAY TYPES

- TO-5 Magnetic-Latching Relays
- TO-5 Non-Latching Relays
- TO-5 Magnetic-Latching, High-Shock Relays
- TO-5 Non-Latching, High-Shock Relays
- TO-5 Non-Latching, High-Vibration Relays

HI-REL SCREENING CAPABILITIES

100% Open Electrical Inspection 100% Precap Inspection Fully Automated Small Particle Inspection (Millipore Clean) Asynchronous Miss Test **Coil Continuity** Sine Vibration Random Vibration High/Low Run In (Miss Test) -65 °C ± 125 °C Radiographic Inspection Mechanical Shock Test Thermal Shock Test Acceleration Radiographic Inspection (X-ray) Mechanical Shock Test Thermal Shock Test Acceleration Load Banks for a Variety of Life Test Load Serialized Printed Electrical Data Continuous Life Testing **Environmental Testing** Vertical Integration

For information or answers to your questions, please visit our website.

APPENDIX: Authorized Distributors

NORTH AMERICA

ALLIED ELECTRONICS Tel: (800) 433-5700 www.alliedelec.com/search.asp

ASAP ELECTRONICS Tel: (800) 477-1272 www.asapelectronics.com

AVNET Tel: (800) 772-8638 www.em.avnet.com

MASTER DISTRIBUTORS Tel: (888) 473-5297 www.onlinecomponents.com

MOUSER ELECTRONICS Tel: (800) 346-6873 www.mouser.com

RICHARDSON ELECTRONICS Tel: (800) 737-6937 www.rell.com

SHERBURN ELECTRONICS Tel: (800) 366-3066 www.sherburn.com

BELGIUM & LUXEMBOURG

Nijkerk Electronics B.V. Tel: +32 (0) 3 544 7066 E-mail: alain.huysmans@nijkerk.be www.nijkerk-ne.com

CHINA & HONG KONG Fiaco Microelectronics

Fiaco Microelectronics Beijing Office Tel: 86-10-6503-2171 E-mail: beijing@fiaco.com

Bright Toward Industrial Co., Ltd. Beijing Office Tel: 86-10-8200-4979 E-mail: linden_wang@toward.com.cn

CZECH REPUBLIC Amtek spol. s.r.o. Tel: +420 547 125 555 E-mail: amtek@amtek.cz www.amtek.cz

DENMARK ARROW Denmark A/S Tel: +45 (0) 70102211 E-mail: jbh@arrownordic.com www.arrowne.com

ESTONIA ARROW Estonia Tel: +372 6 774250 E-mail: estonia@arrownordic.com www.arrowne.com

FINLAND ARROW Finland Oy Tel: +358 9 3212 831 www.arrowne.com

FRANCE ARROW France Tel: +33 1 4978 4960 E-mail: ralves@arrowfrance.com

GERMANY Adelco Elektronik GmbH Tel: +49 (0) 4106 61040 E-mail: adelco@t-online.de www.adelco-elektronik.de Hot Electronic GmbH Tel: +49 (0) 89 666 2836 E-mail: info@hot-electronic.de www.hot-electronic.de

MRC Components oHG Tel: +49 (0) 8161 98480 E-mail: info@mrccomponents.de www.mrccomponents.de

Zettler electronics GmbH Tel: +49 (0) 89 800 97-0 E-mail: office@zettlerelectronics.com www.zettlerelectronics.com

INDIA

Specsynergy Technologies, Inc. San Jose, CA (Main Office) Tel: (408) 954-8474 x105 E-mail: karthik@spectraus.com

Specsynergy Technologies, Inc. New Delhi Office Tel: 91 11 25860 752 E-mail: malik@specsynergytech.com

ISRAEL STG International Ltd. Tel: +972 (0) 3 733 1400

Tel: +972 (0) 3 733 1400 E-mail: davidb@stggroup.co.il www.stggroup.co.il

ITALY SINCRON s.r.l. Tel: +39 02 95384218 E-mail: ermanno.baschieri@sincron.it www.sincron.it

JAPAN

Comcraft Corporation Tokyo Tel: 81-3-3395-5553 E-mail: trcsales@comcraft.co.jp www.comcraft.co.jp

Comcraft Corporation Osaka Tel: 81-6-6396-7722 E-mail: trcsales@comcraft.co.jp www.comcraft.co.jp

KOREA Electro-Comm USA Tel: (818) 848-7790 E-mail: briansong@anyeparts.com www.anyeparts.com

Electro-Comm SEOUL Tel: 82-31-713-4216 E-mail: tony_jang@anyeparts.com www.anyeparts.com

LATVIA ARROW Latvia Tel: +371 7311490 E-mail: latvia@arrownordic.com www.arrowne.com

LITHUANIA ARROW Lithuania Tel: +370-37-759015 E-mail: lithuania@arrownordic.com www.arrowne.com

MALAYSIA Device Electronics PTE, Ltd. Tel: (603) 7880 8626/8636 E-mail: ngthomas@devicelect.com

NETHERLANDS

Nijkerk Electronics B.V. Tel: +32 (0) 3 544 7066 E-mail: alain.huysmans@nijkerk.be www.nijkerk-ne.com

NORWAY

ARROW Norway A/S Tel: +47 (0) 21306532 E-mail: stondevoldshagen@arrownordic.com www.arrowne.com

RUSSIA

Petersburg Electronic Company JSC Tel: +7 812 4488 777 E-mail: dkizha@pec.spb.ru www.pec.spb.ru

SINGAPORE

Device Electronics PTE, Ltd. Tel: 65-288 6455 E-mail: ngthomas@devicelect.com

SOUTH AFRICA RF Design

Tel: National Smart Call: 0861 753 357 Cape Town: +27 (0) 21 555 8400 Gauteng: +27 (0) 11 695 2200 Durban: +27 (0) 31 266 4534 www.ffdesign.co.za

SWEDEN ARROW Sweden Tel: +46 8 56265500 E-mail: aekstrom-winroth@arrownordic.com www.arrowne.com

MicroComp Nordic AB Tel: +46 8 607 3910 E-mail: info@microcomp-nordic.se www.mcnab.se

OEM Electronics Tel: +46 75 242 4562 E-mail: ulf.nygren@oemelectronics.se www.oemelectronics.se

SWITZERLAND ENA AG Tel: +41 56 6342834 E-mail: rolf.hochstrasser@ena.ch www.ena.ch

TAIWAN Bright Toward Industrial Co., Ltd. Tel: +886-2-822-76000

E-mail: philip@relays.com.tw www.relays.com.tw

UNITED KINGDOM

Advanced Power Components plc Tel: +44 (0) 1480 226603 E-mail: angiep@apc-plc.co.uk www. apc-plc.co.uk

Arrow Electronics UK Ltd. Tel: +44 (0) 1279 626 777 www.arrowne.com

Willow Technologies Ltd. Tel: +44 (0) 1342 835 234 E-mail: sales@willow.co.uk www.willow.co.uk

2001 Electronic Components Ltd. Tel: +44 (0) 1438 742 001 E-mail: sales@2001elec.co.uk www.2001elec.co.uk

APPENDIX: Authorized North American Representatives

REPRESENTATIVES

Cain Technology Southern California 2629 Townsgate Road, Suite 200 Westlake Village, CA 91361 Tel: 805-496-5702 Fax: 805-496-6702 www.caintech.com

Cee-Jay Micro Ltd.

Eastern Canada 155 Terence Matthews Crescent Unit 2 Kanata, Ontario Canada K2M 2A8 Tel: 613-599-5626 www.cjmicro.com

CentraMark Technical Sales Associates

TX, OK and LA 3333 Naaman School Road Garland, TX 75040 Tel: 972-414-8188 Fax: 972-414-6788 www.cmatex.com

Comp-Tech Sales

Northern New Jersey, Metro New York, Long Island 232 Boulevard, Suite 11 Hasbrouck Heights, NJ 07604 Tel: (201) 288-7400 Fax: (201) 288-7583 www.comp-techsales.com Eagle Sales Corporation MD, VA, WA DC, Eastern PA, Southern NJ 3545 Ellicott Mills Drive, Suite 202 Ellicott City, MD 21043 Tel: (410) 203-2317 Fax: (410) 203-2318 www.eaglesales.net

EK & Associates, Inc.

IL, WI 887 E. Wilmette Road, Suite J Paltine, IL 60074 Tel: 847-776-1758 Fax: 847-776-8221 www.ekrep.com

Electronic Representatives, Inc.

IN, OH, MI, KY, West PA 6801 Lake Plaza Drive, Suite D402 Indianapolis, IN 46220 Tel: (317) 915-1414 Fax: (317) 915-1216 www.electronicreps.com

Essig & Associates, Inc.

lowa 809 N. Compton Drive Hiawatha, IA 52233 Tel: (319) 363-8703 Fax: (319) 363-7224 www.essigassoc.com

HHP Associates, Inc.

Florida 1355 S. International Pkwy, Suite 2471 Lake Mary, FL 32746 Tel: 407-829-8792 Fax: 407-829-8798 www.hhpai.com

Jay Stone & Associates Northern California 2109 O'Toole Avenue, Suite M San Jose, CA 95131 Tel: 408-428-2500 Fax: 407-428-9000 www.jsarep.com

The MacInnis Company

ME, NH, RI, CT, MA, VT 375 Vanderbilt Avenue Norwood, MA 02062 Tel: (781) 762-8090 Fax: (781) 762-5059 www.macinnis-company.com

MINK Associates

NE, KA, MO 10100 Santa Fe, Suite 311 Overland Park, KS 66212 Tel: (913) 341-8309 Fax: (913) 341-2605 www.minkassoc.com

Precision Marketing Incorporated

MS, AL, TN, GA,NC and SC 5497 Wiles Road, Suite 204 Coconut Creek, FL 33073 Tel: (954) 752-1700 Fax: (954) 973-6335 www.precision-marketing.com

RPI-Apex Associates, Inc.

Upstate New York (excluding Long Island) 54 Andover Street Andover, MA 01810 Tel: 978-475-7055 Fax: 978-475-4749 www.rpi-apex.com

Sea-Port Tech Sales

WA, OR, ID, Western Canada 3630 130th Ave. NE Bellevue, WA 98005 Tel: (425) 702-8300 Fax: (425) 702-8388 www.seaporttech.com

Synergy Sales

Representatives, Inc. *MN, ND, SD* 5401 Gamble Drive, Suite #105 St. Louis Park, MN 55416 Tel: (952) 544-1686 Fax: (952) 545-2935 www.synergyreps.com

Westrep Arizona

AZ, NM, Clark County, NV & El Paso, TX 6105 S. Ash Avenue, Suite A8 Tempe, AZ 85283 Tel: (480) 820-9932 Fax: (480) 820-9962 www.westrepaz.com

HEADQUARTERS

12525 Daphne Ave. Hawthorne, CA 90250 Phone: (323) 777-0077 or (800) 284-7007 Fax: (323) 241-1287 E-mail: relays@teledyne.com

www.teledynerelays.com (800) 284-7007

EUROPE

9-13 Napier Road Wardpark North Cumbernauld G68 OEF Scotland UK Phone: +44 (0) 1236 453 124 Fax: +44 (0) 1236 780 651 E-mail: sales_europe@teledyne.com

www.teledyne-europe.com +44 (0) 1236 453 124

PRINTED IN U.S.A.